堆排序算法 总结

近期面试,老是被问到堆排序算法。
回答时老是感觉思路不清楚,如今总结一下,把思路弄清楚的。

1.堆排序是利用堆的特性对记录序列进行排序的一种排序方法。
好的那么堆得特性是什么呢?
堆得定义:
堆是满足下列性质的数列{r1, r2, …,rn}:

 
例如以下图最開始是一个小顶堆。当把97和13 交换后不是堆了,所以我们要调整根节点使之成为堆即筛选。(注意:是自堆顶到叶子的筛选过程,应该刚開始是堆因为把堆顶给换了,罪魁祸首是堆顶,其他小范围还是堆,所以是从堆顶開始)。

这当中还要注意一点。97 与13 交换后应该跟27 比較为什么呢?
1.由于是小顶堆,所以在97 的子节点里选择小者。假设把38放上去。38成了27的父节点比27大就不是小顶堆了。假设换成大顶堆就要比較把大的数据放上去。
所以程序里交换时要先要比較一下。
程序例如以下:
//堆调整算法
void HeapAdjust (HeapType &H, int s, int m)
{   // 已知 H.r[s..m]中记录的keyword除 H.r[s] 之外
    //均满足堆的特征,本函数自上而下调整 H.r[s]
    //的keyword,使 H.r[s..m] 也成为一个大顶堆
     rc = H.r[s];    // 暂存 H.r[s] 
     for ( j=2*s; j<=m; j*=2 ) { // j 初值指向左孩子
    自上而下的筛选过程;
     }
     // 自上而下的筛选过程
      if ( j<m && H.r[j].key>H.r[j+1].key )  ++j;     
             // 左/右“子树根”之间先进行相互比較
             // 令 j 指示keyword较小记录的位置
      if ( rc.key <= H.r[j].key )  break; 
           // 再作“根”和“子树根”之间的比較,
           // 若“>=”成立,则说明已找到 rc 的插
           // 入位置 s ,不须要继续往下调整

      H.r[s] = H.r[j];   s = j;    
        // 否则记录上移,尚需继续往下调整

    H.r[s] = rc;  // 将调整前的堆顶记录插入到 s  (注意插入的位置为s j=2*s)
} // HeapAdjust

2)建堆是一个从下往上进行“筛选”的过程 (首先要把底部的建成小堆,前面调整是由于仅仅有堆顶,其他都已经是堆了。当我建堆到堆顶是也是从堆顶往下筛选)(所以说建堆大范围是从下往上筛选,在加入该结点时,还得从该节点往下筛选确保加入该节点后还是堆)。
例如以下图建堆过程:  从97 開始->65->38 ->49这是从下往上(大范围从下往上)。第二个图到65时又 65与13 调整了(从上往下调整)。当到49时也是49<-> 13  <-> 27所以也是从上之下调整(为了确保增加该结点后还是堆)。



程序例如以下:
堆排序算法例如以下:
void HeapSort ( HeapType &H ) {
  // 对顺序表 H 进行堆排序
for ( i=H.length/2;   i>0;   --i )
     HeapAdjust ( H.r, i, H.length );    // 建小顶堆

for ( i=H.length; i>1; --i ) {
     H.r[1]←→H.r[i];           
          // 将堆顶记录和当前未经排序子序列
          //  H.r[1..i]中最后一个记录相互交换
     HeapAdjust(H.r, 1, i-1);  // 对 H.r[1] 进行筛选
}
} // HeapSort

note: 堆排序算法曾经看过几遍老是忘,问得时候思路不太清楚。仅仅要把关键几个点弄清楚,把思路搞清楚了以后就不怕了。







posted @ 2015-05-27 11:27  hrhguanli  阅读(247)  评论(0编辑  收藏  举报