Socket通信原理和实践
我们深谙信息交流的价值,那网络中进程之间怎样通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与webserver通信的?当你用QQ聊天时,QQ进程怎么与server或你好友所在的QQ进程通信?这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的。本文的主要内容例如以下:
- 1、网络中进程之间怎样通信?
- 2、Socket是什么?
- 3、socket的基本操作
- 3.1、socket()函数
- 3.2、bind()函数
- 3.3、listen()、connect()函数
- 3.4、accept()函数
- 3.5、read()、write()函数等
- 3.6、close()函数
- 4、socket中TCP的三次握手建立连接具体解释
- 5、socket中TCP的四次握手释放连接具体解释
- 6、一个样例
1、网络中进程之间怎样通信?
本地的进程间通信(IPC)有非常多种方式,但能够总结为以下4类:
- 消息传递(管道、FIFO、消息队列)
- 同步(相互排斥量、条件变量、读写锁、文件和写记录锁、信号量)
- 共享内存(匿名的和具名的)
- 远程过程调用(Solaris门和Sun RPC)
但这些都不是本文的主题!我们要讨论的是网络中进程之间怎样通信?首要解决的问题是怎样唯一标识一个进程,否则通信无从谈起!在本地能够通过进程PID来唯一标识一个进程,可是在网络中这是行不通的。事实上TCP/IP协议族已经帮我们攻克了这个问题,网络层的“ip地址”能够唯一标识网络中的主机,而传输层的“协议+端口”能够唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就能够标识网络的进程了,网络中的进程通信就能够利用这个标志与其他进程进行交互。
使用TCP/IP协议的应用程序通常採用应用编程接口:UNIX BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就眼下而言,差点儿全部的应用程序都是採用socket,而如今又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。
2、什么是Socket?
上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之中的一个就是“一切皆文件”,都能够用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。
socket一词的起源
在组网领域的首次使用是在1970年2月12日公布的文献IETF RFC33中发现的,撰写者为Stephen Carr、Steve Crocker和Vint Cerf。依据美国计算机历史博物馆的记载,Croker写道:“命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可全然由一对套接字接口规定。”计算机历史博物馆补充道:“这比BSD的套接字接口定义早了大约12年。”
3、socket的基本操作
既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操作相应的函数接口。以下以TCP为例,介绍几个主要的socket接口函数。
3.1、socket()函数
int socket(int domain, int type, int protocol);
socket函数相应于普通文件的打开操作。普通文件的打开操作返回一个文件描写叙述字,而socket()用于创建一个socket描写叙述符(socket descriptor),它唯一标识一个socket。这个socket描写叙述字跟文件描写叙述字一样,兴许的操作都实用到它,把它作为參数,通过它来进行一些读写操作。
正如能够给fopen的传入不同參数值,以打开不同的文件。创建socket的时候,也能够指定不同的參数创建不同的socket描写叙述符,socket函数的三个參数分别为:
- domain:即协议域,又称为协议族(family)。经常使用的协议族有,AF_INET、AF_INET6、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须採用相应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
- type:指定socket类型。经常使用的socket类型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的类型有哪些?)。
- protocol:故名思意,就是指定协议。经常使用的协议有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它们分别相应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。
注意:并非上面的type和protocol能够任意组合的,如SOCK_STREAM不能够跟IPPROTO_UDP组合。当protocol为0时,会自己主动选择type类型相应的默认协议。
当我们调用socket创建一个socket时,返回的socket描写叙述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。假设想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()、listen()时系统会自己主动随机分配一个端口。
3.2、bind()函数
正如上面所说bind()函数把一个地址族中的特定地址赋给socket。比如相应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
函数的三个參数分别为:
- sockfd:即socket描写叙述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描写叙述字绑定一个名字。
- addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构依据地址创建socket时的地址协议族的不同而不同,如ipv4相应的是: ipv6相应的是:
struct sockaddr_in { sa_family_t sin_family; /* address family: AF_INET */ in_port_t sin_port; /* port in network byte order */ struct in_addr sin_addr; /* internet address */ }; /* Internet address. */ struct in_addr { uint32_t s_addr; /* address in network byte order */ };
Unix域相应的是:struct sockaddr_in6 { sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* port number */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */ }; struct in6_addr { unsigned char s6_addr[16]; /* IPv6 address */ };
#define UNIX_PATH_MAX 108 struct sockaddr_un { sa_family_t sun_family; /* AF_UNIX */ char sun_path[UNIX_PATH_MAX]; /* pathname */ };
- addrlen:相应的是地址的长度。
通常server在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就能够通过它来接连server;而client就不用指定,有系统自己主动分配一个端口号和自身的ip地址组合。这就是为什么通常server端在listen之前会调用bind(),而client就不会调用,而是在connect()时由系统随机生成一个。
网络字节序与主机字节序
主机字节序就是我们寻常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义例如以下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
网络字节序:4个字节的32 bit值以以下的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这样的传输次序称作大端字节序。因为TCP/IP首部中全部的二进制整数在网络中传输时都要求以这样的次序,因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。
所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。因为这个问题曾引发过血案!公司项目代码中因为存在这个问题,导致了非常多莫名其妙的问题,所以请谨记对主机字节序不要做不论什么假定,务必将其转化为网络字节序再赋给socket。
3.3、listen()、connect()函数
假设作为一个server,在调用socket()、bind()之后就会调用listen()来监听这个socket,假设client这时调用connect()发出连接请求,server端就会接收到这个请求。
int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
listen函数的第一个參数即为要监听的socket描写叙述字,第二个參数为相应socket能够排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。
connect函数的第一个參数即为client的socket描写叙述字,第二參数为server的socket地址,第三个參数为socket地址的长度。client通过调用connect函数来建立与TCPserver的连接。
3.4、accept()函数
TCPserver端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCPclient依次调用socket()、connect()之后就想TCPserver发送了一个连接请求。TCPserver监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就能够開始网络I/O操作了,即类同于普通文件的读写I/O操作。
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
accept函数的第一个參数为server的socket描写叙述字,第二个參数为指向struct sockaddr *的指针,用于返回client的协议地址,第三个參数为协议地址的长度。假设accpet成功,那么其返回值是由内核自己主动生成的一个全新的描写叙述字,代表与返回客户的TCP连接。
注意:accept的第一个參数为server的socket描写叙述字,是server開始调用socket()函数生成的,称为监听socket描写叙述字;而accept函数返回的是已连接的socket描写叙述字。一个server通常通常仅仅仅仅创建一个监听socket描写叙述字,它在该server的生命周期内一直存在。内核为每一个由server进程接受的客户连接创建了一个已连接socket描写叙述字,当server完毕了对某个客户的服务,相应的已连接socket描写叙述字就被关闭。
3.5、read()、write()等函数
万事具备仅仅欠东风,至此server与客户已经建立好连接了。能够调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有以下几组:
- read()/write()
- recv()/send()
- readv()/writev()
- recvmsg()/sendmsg()
- recvfrom()/sendto()
我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上能够把上面的其他函数都替换成这两个函数。它们的声明例如以下:
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
#include <sys/types.h>
#include <sys/socket.h>
ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);
ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,假设返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。假设错误为EINTR说明读是由中断引起的,假设是ECONNREST表示网络连接出了问题。
write函数将buf中的nbytes字节内容写入文件描写叙述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描写叙述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要依据错误类型来处理。假设错误为EINTR表示在写的时候出现了中断错误。假设为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。
其他的我就不一一介绍这几对I/O函数了,具体參见man文档或者baidu、Google,以下的样例中将使用到send/recv。
3.6、close()函数
在server与client建立连接之后,会进行一些读写操作,完毕了读写操作就要关闭相应的socket描写叙述字,好比操作完打开的文件要调用fclose关闭打开的文件。
#include <unistd.h>
int close(int fd);
close一个TCP socket的缺省行为时把该socket标记为以关闭,然后马上返回到调用进程。该描写叙述字不能再由调用进程使用,也就是说不能再作为read或write的第一个參数。
注意:close操作仅仅是使相应socket描写叙述字的引用计数-1,仅仅有当引用计数为0的时候,才会触发TCPclient向server发送终止连接请求。
4、socket中TCP的三次握手建立连接具体解释
我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程例如以下:
- client向server发送一个SYN J
- server向client响应一个SYN K,并对SYN J进行确认ACK J+1
- client再想server发一个确认ACK K+1
仅仅有就完了三次握手,可是这个三次握手发生在socket的那几个函数中呢?请看下图:
图1、socket中发送的TCP三次握手
从图中能够看出,当client调用connect时,触发了连接请求,向server发送了SYN J包,这时connect进入堵塞状态;server监听到连接请求,即收到SYN J包,调用accept函数接收请求向client发送SYN K ,ACK J+1,这时accept进入堵塞状态;client收到server的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;server收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。
总结:client的connect在三次握手的第二个次返回,而server端的accept在三次握手的第三次返回。
5、socket中TCP的四次握手释放连接具体解释
上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。如今我们介绍socket中的四次握手释放连接的过程,请看下图:
图2、socket中发送的TCP四次握手
图示步骤例如以下:
- 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
- 还有一端接收到FIN M之后,运行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
- 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
- 接收到这个FIN的源发送端TCP对它进行确认。
这样每一个方向上都有一个FIN和ACK。
6.以下给出实现的一个实例
首先,先给出实现的截图
server端代码例如以下:
#include "InitSock.h" #include <stdio.h> #include <iostream> using namespace std; CInitSock initSock; // 初始化Winsock库 int main() { // 创建套节字 SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); //用来指定套接字使用的地址格式,通常使用AF_INET //指定套接字的类型,若是SOCK_DGRAM,则用的是udp不可靠传输 //配合type參数使用,指定使用的协议类型(当指定套接字类型后,能够设置为0,因为默觉得UDP或TCP) if(sListen == INVALID_SOCKET) { printf("Failed socket() \n"); return 0; } // 填充sockaddr_in结构 ,是个结构体 /* struct sockaddr_in { short sin_family; //地址族(指定地址格式) ,设为AF_INET u_short sin_port; //端口号 struct in_addr sin_addr; //IP地址 char sin_zero[8]; //空子节,设为空 } */ sockaddr_in sin; sin.sin_family = AF_INET; sin.sin_port = htons(4567); //1024 ~ 49151:普通用户注冊的端口号 sin.sin_addr.S_un.S_addr = INADDR_ANY; // 绑定这个套节字到一个本地地址 if(::bind(sListen, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR) { printf("Failed bind() \n"); return 0; } // 进入监听模式 //2指的是,监听队列中同意保持的尚未处理的最大连接数 if(::listen(sListen, 2) == SOCKET_ERROR) { printf("Failed listen() \n"); return 0; } // 循环接受客户的连接请求 sockaddr_in remoteAddr; int nAddrLen = sizeof(remoteAddr); SOCKET sClient = 0; char szText[] = " TCP Server Demo! \r\n"; while(sClient==0) { // 接受一个新连接 //((SOCKADDR*)&remoteAddr)一个指向sockaddr_in结构的指针,用于获取对方地址 sClient = ::accept(sListen, (SOCKADDR*)&remoteAddr, &nAddrLen); if(sClient == INVALID_SOCKET) { printf("Failed accept()"); } printf("接受到一个连接:%s \r\n", inet_ntoa(remoteAddr.sin_addr)); continue ; } while(TRUE) { // 向client发送数据 gets(szText) ; ::send(sClient, szText, strlen(szText), 0); // 从client接收数据 char buff[256] ; int nRecv = ::recv(sClient, buff, 256, 0); if(nRecv > 0) { buff[nRecv] = '\0'; printf(" 接收到数据:%s\n", buff); } } // 关闭同client的连接 ::closesocket(sClient); // 关闭监听套节字 ::closesocket(sListen); return 0; }
client代码:
#include "InitSock.h" #include <stdio.h> #include <iostream> using namespace std; CInitSock initSock; // 初始化Winsock库 int main() { // 创建套节字 SOCKET s = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if(s == INVALID_SOCKET) { printf(" Failed socket() \n"); return 0; } // 也能够在这里调用bind函数绑定一个本地地址 // 否则系统将会自己主动安排 // 填写远程地址信息 sockaddr_in servAddr; servAddr.sin_family = AF_INET; servAddr.sin_port = htons(4567); // 注意,这里要填写server程序(TCPServer程序)所在机器的IP地址 // 假设你的计算机没有联网,直接使用127.0.0.1就可以 servAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1"); if(::connect(s, (sockaddr*)&servAddr, sizeof(servAddr)) == -1) { printf(" Failed connect() \n"); return 0; } char buff[256]; char szText[256] ; while(TRUE) { //从server端接收数据 int nRecv = ::recv(s, buff, 256, 0); if(nRecv > 0) { buff[nRecv] = '\0'; printf("接收到数据:%s\n", buff); } // 向server端发送数据 gets(szText) ; szText[255] = '\0'; ::send(s, szText, strlen(szText), 0) ; } // 关闭套节字 ::closesocket(s); return 0; }
封装的InitSock.h
#include <winsock2.h> #include <stdlib.h> #include <conio.h> #include <stdio.h> #pragma comment(lib, "WS2_32") // 链接到WS2_32.lib class CInitSock { public: CInitSock(BYTE minorVer = 2, BYTE majorVer = 2) { // 初始化WS2_32.dll WSADATA wsaData; WORD sockVersion = MAKEWORD(minorVer, majorVer); if(::WSAStartup(sockVersion, &wsaData) != 0) { exit(0); } } ~CInitSock() { ::WSACleanup(); } };
本文出处:
作者:吴秦
出处:http://www.cnblogs.com/skynet/