2017-2018-1 20155329 实验二 固件程序设计
2017-2018-1 20155329 实验二 固件程序设计
实验目的
- 了解MDK原理,并学会破解。
- 学习GPIO原理,掌握Z32安全模块驱动LED的工作原理。
- 了解sm系列sm1、2、3、4国密算法,掌握各个算法的加解密算法。
- 学习串口通信原理,掌握SP3232芯片的使用方法。
步骤一
- 注意不经老师允许不准烧写自己修改的代码
- 两人(个别三人)一组
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.1-1.5安装MDK,JLink驱动,注意,要用系统管理员身分运行uVision4,破解MDK(破解程序中target一定选ARM)
- 提交破解程序中产生LIC的截图
- 提交破解成功的截图
步骤二:固件程序设计-2-LED
- 注意不经老师允许不准烧写自己修改的代码
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.4” KEIL-MDK 中添加 Z32 SC-000 芯片库,提交安装截图
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.9”完成LED实验,注意“打开Z32的电源开关前,按住Reboot按键不放,两次打开电源开关,Z32即可被电脑识别,进行下载调试。提交运行结果截图
- 实验报告中分析代码
程序分析 主函数代码的执行过程为:
- 系统初始化,中断设置使能所有;
- 判断按键,返回 boot 条件,确认是否进行程序下载;
- 设置 GPIO0 状态为上拉输出;
- 进入循环程序, LED 灯间隔 100ms 闪烁。
int main(void)
{
//系统中断向量设置,使能所有中断
SystemInit ();
//返回boot条件
if(0 == GPIO_GetVal(0))
{
BtApiBack(0x55555555, 0xAAAAAAAA);
}
GPIO_PuPdSel(0,0); //设置 GPIO0 为上拉
GPIO_InOutSet(0,0); //设置 GPIO0为输出
while(1)
{
delay(100);
GPIO_SetVal(0,0); // 输出低电平,点亮 LEDLED
delay(100);
GPIO_SetVal(0,1); // 输出高电平,熄灭 LEDLED
}
}
//延时函数,当系统时钟为内部OSC时钟时,延时1ms
void delay(int ms)
{
int i;
while(ms--)
{
for(i=0;i<950;i++)
}
}
步骤三: 固件程序设计-3-UART
- 注意不经老师允许不准烧写自己修改的代码
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.4” KEIL-MDK 中添加 Z32 SC-000 芯片库,提交安装截图
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.0”完成UART发送与中断接收实验,注意“打开Z32的电源开关前,按住Reboot按键不放,两次打开电源开关,Z32即可被电脑识别,进行下载调试。提交运行结果截图
- 实验报告中分析代码
串口函数
extern UINT8 shuju[64];
extern UINT8 shuju_lens;
extern UINT8 uart_rx_num;
extern UINT8 uart_rx_end;
void UART_IrqService(void)
{ //*****your code*****/
UARTCR &= ~TRS_EN;
{
do{
shuju[uart_rx_num] = UARTDR;
if(shuju[uart_rx_num]=='\r'||shuju[ua
rt_rx_num]=='\n')
{
shuju_lens = uart_rx_num;
uart_rx_num=0;
uart_rx_end=1;
}
else uart_rx_num++;
}
while(FIFO_NE & UARTISR);
}
UARTCR |= TRS_EN;
}
/** * @函数:波特率设置 * @set:
0-默认波特率
115200,其他:需根据时钟源和分频计算
出 set = 时 钟(hz)/波特率 * @返回:
none */
void UART_BrpSet(UINT16 set)
{
UINT16 brp=0;
UINT8 fd=0;
if(0 == set)
{
//uartband@115200bps
fd = SCU->UARTCLKCR & 0x80;
switch(fd)
{
case 0x80:
/*外部时钟 12M 晶振*/
brp = 0x0068;
break;
case 0x00:
/*内部时钟*/
brp = 0x00AD;
break;
default:
brp = 0x00AD;
break;
}
fd = SCU->UARTCLKCR & 0x7f ;
brp = brp/(fd+1);
}
else
{
brp = set;
}
UARTBRPH = (UINT8)((brp >> 8) &
0xFF);
UARTBRPL = (UINT8)((brp) & 0xFF);
}
/** * @函数:初始化 * @返回:none
*/
void UART_Init(void)
{
IOM->CRA |= (1<<0);
//使能 Uart 接口
SCU->MCGR2 |= (1<<3);
//使能 Uart 总线时钟
/******配置Uart时钟(建议使用外部晶
振)******/
SCU->SCFGOR |= (1<<6);
// 使能外部晶振
SCU->UARTCLKCR |= (1<<7);
//使用外部时钟 //
SCU->UARTCLKCR &= ~(1<<7);
//使用内部 OSC 时钟
UART_BrpSet(0);
//设置波特率为默认 115200
UARTISR = 0xFF;
//状态寄存器全部清除
UARTCR |= FLUSH;
//清除接收 fifo
UARTCR = 0; //偶校验
/******配置中断使能******/
UARTIER |= FIFO_NE;
// UARTIER |= FIFO_HF;
// UARTIER |= FIFO_FU;
// UARTIER |= FIFO_OV;
// UARTIER |= TXEND;
// UARTIER |= TRE;
ModuleIrqRegister(Uart_Exception,UAT
_IrqService);
//挂载中断号
}
/** * @函数:Uart 发送一个字节 *
@dat: 要发送的数据字节 *
@返回:None */
void UART_SendByte(UINT8 dat)
{
UARTCR |= TRS_EN;
UARTDR = dat;
do{
if(UARTISR & TXEND)
{
UARTISR |= TXEND;
//清除发送完成标志,写 1 清除
break;
}
}
while (1);
UARTCR &= (~TRS_EN);
}
/** * @函数:Uart 发送一个字符串 *
@str: 要发送的字符串
* @返回:None */
void UART_SendString(UINT8 * str)
{
UINT8 *p ;
p=str;
while(*p!=0){
UART_SendByte(*p++);
}
}
/** * @函数:Uart
发送某一长度的字符串 * @buf:
要发送的字符串 * @length:
要发送的长度 * @返回:None */
void uart_SendString(UINT8buf[],UINT8
length)
{
UINT8 i=0;
while(length>i){
UART_SendByte(buf[i]);
i=i+1;
}
}
/** * @函数:Uart
发送一个十进制整数 * @num:
要发送的整数
* @返回:None */
void UART_SendNum(INT32 num)
{
INT32 cnt = num,k;
UINT8 i,j;
if(num<0) {
UART_SendByte('-');
num=-num;}
//计算出 i 为所发数据的位数
for(i=1;;i++)
{
cnt = cnt/10;
if(cnt == 0)
break;
}
//算出最大被除数从高位分离
k = 1;
for(j=0;j<i-1;j++)
{
k = k*10;
}
//分离并发送各个位
cnt = num;
for(j=0;j<i;j++)
{
cnt = num/k;
num = num%k;
UART_SendByte(0x30+cnt);
k /= 10;
}
}
/** * @函数:Uart 发送一个 16
进制整数 * @dat: 要发送的 16 进制数
* @返回:None */
void UART_SendHex(UINT8 dat)
{
UINT8 ge,shi;
UART_SendByte('0');
UART_SendByte('x');
ge = dat%16;
shi = dat/16;
if(ge>9) ge+=7;
//转换成大写字母
if(shi>9)
shi+=7;
UART_SendByte(0x30+shi);
UART_SendByte(0x30+ge);
UART_SendByte(' ');
}
/** * @函数:Uart 接收一个字节 *
@param receive addsress * @返回:
flag */
UINT8 UART_GetByte(UINT8 *data)
{
UINT8 ret= 0;
if(0 != (UARTISR & FIFO_NE))
{
*data = UARTDR;
ret = 1;
}
return ret;
}
/** * @函数:Uart 接收多个字节
* @param receive addsress * @len:
长度 * @返回:none */
void UART_Receive(UINT8 *receive,
UINT8 len)
{
while(len != 0){
if(len >= 4)
{
while (!(UARTISR & FIFO_FU));
*receive++ = UARTDR;
*receive++ = UARTDR;
*receive++ = UARTDR;
*receive++ = UARTDR;
len -= 4;
}
else if(len >= 2)
{
while (!(UARTISR & FIFO_HF));
*receive++ = UARTDR;
*receive++ = UARTDR;
len -= 2;
}
else
{
while (!(UARTISR & FIFO_NE));
*receive++ = UARTDR;
len--;
}
}
}
- 串口相关函数包括串口中断服务、波特率 设置、串口初始化、发送/接收单 字节、发送字符串、发送单个十进制整数 、发送单个十六进制整数、发送某一长度 的字符串、接收多字节函数:
-
void UART_IrqService(void)是串口 中断服务函数,本实验中实现串口中 断执行子程序,从 PC 端串口调试助手发送数据至 Z32,Z32 再经串口 发送给 PC 机;
-
void UART_BrpSet(UINT16 set)是波特率设置函数,串口实验波特率 设置 为 115200;
-
void UART_Init(void)是串口初始化函数,实 现配置串口时钟、使能中断;
-
void UART_SendByte(UINT8 dat)是发送单字节函数,使用此函数一次 发 送一个字节数据; 5) void UART_SendString(UINT8 * str)是发送字符串函数,使用此函数发送 字符串数据;
-
void uart_SendString(UINT8 buf[],UINT8 length)是发送某一长度的字符 串函数,实现发送一定长度的字符串数据 。
-
void UART_SendNum(INT32 num)是发送单个十进制整数函数,使用此 函数发送一个十进制整数;
-
void UART_SendHex(UINT8 dat)是发送单个十六进制整数函数,使用 此 函数发送一个十六进制整数;
-
UINT8 UART_GetByte(UINT8 *data)是接收单字节函数,使用此函数接 收单字节数据;
-
void UART_Receive(UINT8 *receive, UINT8 len) 是接收多字节函数,使 用此函数接收多个字节数据;
主函数
UINT8 shuju_lens;
UINT8 shuju[64];
UINT8 uart_rx_num;
UINT8 uart_rx_end;
int main(void)
{ /*********************此段代码勿动*
**********************/
//系统中断向量设置,使能所有中断
SystemInit ();
// 返回 boot 条件
if(0 == GPIO_GetVal(0))
{
BtApiBack(0x55555555, 0xAAAAAAAA);
}
/*********************此段代码勿动***
********************/
UART_Init();
//初始化 Uart
UART_SendByte('A');
//Uart 发送一个字符 A
UART_SendByte('\r');
UART_SendByte('\n');
//换行
UART_SendString("Welcome to
Z32HUA!"); //Uart 发送字符串
UART_SendByte('\r');UART_SendByte('\n
');
//换行
UART_SendNum(1234567890);
//Uart 发送一个十进制数
UART_SendByte('\r');UART_SendByte('\n
');
//换行
UART_SendHex(0xAA);
//Uart 发送一个十六进制数
UART_SendByte('\r');UART_SendByte('\n
');
//换行
while(1)
{
if(uart_rx_end)
{
uart_rx_end=0;
uart_SendString(shuju,shuju_lens);
}
}
//等待接收中断
}
//延时函数,当系统时钟为内部 OSC
时钟时,延时 1ms
void delay(int ms)
{
int i;
while(ms--)
{
for(i=0;i<950;i++) ;
}
}
- 代码执行顺序
- 系统初始化,中断设置,使能所有中 ;
- 判断按键,返回 boot 条件,确认是否进行程序下载;
- 初始化 Uart,使能 Uart 接口,配置 Uart 中断并使能;
- 先发送单个字符“A”,换行,再发送字 符串“Welcome to Z32HUA!”, 换行,发送数字串“1234567890”,换行, 再发送 16 位数“0xAA”,换 行。
- 进入 while 循环程序,等待串口中断到来并判断数据 是否接收完毕,若 中断到来,转入执行串口中断服务程序, 待接收数据完毕,Z32 将数据 发回串口助手。
步骤五:固件程序设计-5-SM1
- 注意不经老师允许不准烧写自己修改的代码
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.4” KEIL-MDK 中添加 Z32 SC-000 芯片库,提交安装截图
- 参考云班课资源中“信息安全系统实验箱指导书.pdf “第一章,1.16”完成SM1加密实验,注意“打开Z32的电源开关前,按住Reboot按键不放,两次打开电源开关,Z32即可被电脑识别,进行下载调试。提交运行结果截图
- 实验报告中分析代码
代码分析
UINT8
jiamiqian[16]={0x00,0x01,0x02,0x03,0x
04,0x05,0x06,0x07,0x08,0x09,0x0A,0x
0B,0x0C,0x0D,0x0E,0x0F};
UINT8
jiamimiyue[16]={0x00,0x01,0x02,0x03,0
x04,0x05,0x06,0x07,0x08,0x09,0x0A,
0x0B,0x0C,0x0D,0x0E,0x0F};
UINT8
jiamihou[16];
UINT8
jiemiqian[16],jiemimiyue[16],jiemihou
[16];
UINT8
cuowumiyue[16]={0x00,0x00,0x00,0x00,0
x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00};
UINT8
UserCode[5];
UINT8 C;
int main(void)
{
/*********************此段代码勿动***
********************/
//系统中断向量设置,使能所有中断
SystemInit ();
// 返回 boot 条件
if(0 == GPIO_GetVal(0))
{
BtApiBack(0x55555555, 0xAAAAAAAA);
}
/*********************此段代码勿动***********************/
/*初始化 IC 卡插入检测 IO 口 GPIO6*/
GPIO_Config(6);
PIO_PuPdSel(6,0); //上拉
GPIO_InOutSet(6,1); //输入
UART_Init();
lcd_init();
KEY_Init();
lcd_pos(0,0);//定位第一行
lcd_string("SLE4428 实验!");
A: while(1){
lcd_pos(1,0);//定位第二行
lcd_string("请插入 IC 卡. ");
delay(1000);
if(GPIO_GetVal(6)==0)
break;
lcd_pos(1,0);//定位第二行
lcd_string("请插入 IC 卡.. ");
delay(1000);
if(GPIO_GetVal(6)==0)
break;
lcd_pos(1,0);//定位第二行
lcd_string("请插入 IC 卡...");
delay(1000);
if(GPIO_GetVal(6)==0)
break;
}
if(SLE4428_InitAndRST(2)!=0xFFFFFFFF
)
//收到 ATR
{
lcd_pos(1,0);//定位第二行
lcd_string("已插入 SLE4428"); }
else
{
lcd_pos(1,0);//定位第二行
lcd_string("卡不正确 ");
SLE4428_Deactivation();
//下电,去激活
delay(1000);
goto A;
}
lcd_pos(2,0);//定位第三行
lcd_string("用户代码为:");
SLE4428_ReadData(0x15,UserCode,6);
//读取用户代码
lcd_pos(3,0);//定位第四行
for(UINT8 i=0;i<6;i++)
lcd_Hex(UserCode[i]) ;
while(KEY_ReadValue()!='A');
//等待 A 键按下
lcd_wcmd(0x01);
//清屏
lcd_pos(0,0);//定位第一行
lcd_string("按-A 键校验密码");
lcd_pos(1,0);//定位第二行
lcd_string("校验 0xFF,0xFF");
while(KEY_ReadValue()!='A');
//等待 A 键按下
lcd_pos(2,0);//定位第三行
if(SLE4428_PassWord(0xFF,0xFF)==1)
lcd_string("校验成功");
else
{
lcd_string("校验失败"); return 0;}
lcd_pos(3,0);//定位第四行
switch(SLE4428_ReadByte(0x03fd))
//查看剩余密码验证机会
{
case 0xff:
lcd_string("剩余机会: 8 次");
break;
case 0x7f:
lcd_string("剩余机会: 7 次");
break; case 0x3f:
lcd_string("剩余机会: 6 次");
break;
case 0x1f:
lcd_string("剩余机会: 5 次");
break;
case 0x0f:
lcd_string("剩余机会: 4 次");
break;
case 0x07:
lcd_string("剩余机会: 3 次");
break;
case 0x03:
lcd_string("剩余机会: 2 次");
break;
case 0x01:
lcd_string("剩余机会: 1 次");
break;
case 0x00:
lcd_string("剩余机会: 0 次");
break;
default:
break;
}
while(KEY_ReadValue()!='A');
//等待 A 键按下 B:
lcd_wcmd(0x01);//清屏
lcd_pos(0,0);//定位第一行
lcd_string("加密解密实验");
lcd_pos(1,0);//定位第二行
lcd_string("1.加密");
lcd_pos(2,0);//定位第三行
lcd_string("2.解密");
do{
C=KEY_ReadValue();
} while(C!='1'&&C!='2');
//等待 1 或 2 键按下
lcd_wcmd(0x01);//清屏
if(C=='1')
goto jiami;
else if(C=='2') goto jiemi;
else ;
jiami:
lcd_pos(0,0);//定位第一行
lcd_string("观看串口调试助手");
lcd_pos(1,0);//定位第二行
lcd_string("A 键确认加密");
UART_SendString("将加密以下数据:\r\n");
for(UINT8 i=0;i<16;i++)
{
UART_SendHex(jiamiqian[i]);
}
UART_SendString("\r\n");
UART_SendString("加密密钥:\r\n");
for(UINT8 i=0;i<16;i++)
{
UART_SendHex(jiamimiyue[i]);
}
UART_SendString("\r\n");
while(KEY_ReadValue()!='A');
//等待 A 键按下
SM1_Init(jiamimiyue); //SM1 初始化
SM1_Crypto(jiamiqian, 16, 0, 0, 0,jiamihou); //进行加密
SM1_Close(); //关闭安全模块
UART_SendString("加密后的数据:\r\n");
for(UINT8 i=0;i<16;i++)
{
UART_SendHex(jiamihou[i]);
}
UART_SendString("\r\n");
lcd_pos(2,0);//定位第三行
lcd_string("加密完成");
lcd_pos(3,0);//定位第四行
lcd_string("A 键存入 IC 卡");
while(KEY_ReadValue()!='A');
//等待 A 键按下
for(UINT8 i=0;i<16;i++)
{
SLE4428_Write_Byte(0x20+i,jiamihou[i]);
//设置IC卡 0x20地址为存储 加密数据的地址
}
UART_SendString("已将数据写入 IC 卡。\r\n");
UART_SendString("\r\n");
goto B;
jiemi:
lcd_pos(0,0);//定位第一行
lcd_string("观看串口调试助手");
lcd_pos(1,0);//定位第二行
lcd_string(" A 键读取 IC 卡数据");
while(KEY_ReadValue()!='A');
//等待 A 键按下
SLE4428_ReadData(0x20,jiemiqian,16);
UART_SendString("读取的数据为:\r\n");
for(UINT8 i=0;i<16;i++)
{
UART_SendHex(jiemiqian[i]);
}
UART_SendString("\r\n");
lcd_wcmd(0x01);//清屏
lcd_pos(0,0);//定位第一行
lcd_string("读取成功");
lcd_pos(1,0);//定位第二行
lcd_string("选择密钥解密:");
lcd_pos(2,0);//定位第三行
lcd_string("1.正确密钥");
lcd_pos(3,0);//定位第四行
lcd_string("2.错误密钥");
do{
C=KEY_ReadValue();
} while(C!='1'&&C!='2');
//等待 1 或 2 键按下
lcd_wcmd(0x01);//清屏
if(C=='1')
{
for(UINT8 i=0;i<16;i++) jiemimiyue[i] = jiamimiyue[i];
}
else if(C=='2')
{
for(UINT8 i=0;i<16;i++)
jiemimiyue[i] = cuowumiyue[i];
}
else ;
UART_SendString("将使用以下密钥进行解密:\r\n");
for(UINT8 i=0;i<16;i++)
{
UART_SendHex(jiemimiyue[i]);
}
UART_SendString("\r\n");
lcd_pos(0,0);//定位第一行
lcd_string("A 键确认解密");
while(KEY_ReadValue()!='A');
//等待 A 键按下
SM1_Init(jiemimiyue);
//SM1 初始化
SM1_Crypto(jiemiqian, 16, 1, 0, 0,jiemihou);
//进行解密
SM1_Close(); //关闭安全模块
lcd_pos(1,0);//定位第二行
lcd_string("解密完成");
lcd_pos(2,0);//定位第三行
lcd_string("A 键返回");
UART_SendString("解密后的数据为:\r\
n"); for(UINT8 i=0;i<16;i++) {
UART_SendHex(jiemihou[i]); }
UART_SendString("\r\n");
UART_SendString("\r\n");
while(KEY_ReadValue()!='A');
//等待 A 键按下
goto B;
SLE4428_Deactivation(); //下电,去激活,实验结束
while(1) {
}
}
//延时函数,当系统时钟为内部 OSC 时钟时,延时 1ms
void delay(int ms)
{
int i;
while(ms--)
{
for(i=0;i<950;i++) ;
}
}
- 程序执行过程
- 系统初始化,中断设置,使能所有中断;
- 判断按键,返回 boot 条件,确认是否进行程序下载;
- 初始化 IC 卡插入检测端口 GPIO6;
- 串口初始化;
- LCD12864 初始化;
- 矩阵键盘初始化;
- 液晶屏第一行显示字符串“SLE4428 实验!”。
** A 段程序:**
-
第二行显示“请插入 IC 卡”,等待卡片插入;
-
SLE4428 IC 卡正确插入,第二行显示“已插入 SLE4428”,卡片插入错 误则第二行显示“卡不正确 ”;
-
IC 卡正确插入,则显示“用户代码为:XXXXXXXXXX”( XXXXXXXXXX 代表 用户的代码),等待按下键盘的“A”键;
-
按下“A”键,显示屏第一行显示“按-A 键校验密码”,第二行显示“校 验 0xFF,0xFF”,等待“A”键按下。
-
按下“A”键,若校验密码正确,显示屏第三行显示“校验成功”,否则 显示“校验失败”,第四行显示剩余密码验证机会次数“剩余机会: X 次”(X 初始最大为 8,最小 0,当校验密码错误验证一次后,X 减 1), 等待“A”键按下;
B 段程序
按下“A”键,显示屏第一行显示“加密解密试验”,第二、三行分别显 示“1.加密”、“2.解密”两个选项。等待按键按下:如果“1”按下, 跳转至加密程序段,如果“2”按下,跳转至解密程序段;
加密程序段:
- 第一行显示“观看串口调试助手”,第二行显示“A 键确认加密”,通过 串口发送字符串“将加密以下数据:”并将加密前的数据发送至 PC 机, 发送换行,串口继续发送“加密密钥:”并将加密密钥数组发送至 PC 机, 发送完毕等待“A”键按下;
-
按下“A”键后,SM1 初始化;
-
进行 SM1 加密;
-
关闭 SM1 加密安全模块;
通过串口发送字符串“加密后的数据:”并将加密后的数据发送至 PC 机, 换行,在液晶屏第三行显示“加密完成”,第四行显示“A 键存入 IC 卡”, 等待“A”键按下。当“A”键按下后,向 SLE4428 IC 卡加密后的数据, 通过串口向 PC 发送“已将数据写入 IC 卡。”跳转至 B 段程序。
解密程序段:
- 屏幕第一行显示“观看串口调试助手”,第二行显示“A 键读取 IC 卡数 据”,当“A”键按下,读取 SLE4428 IC 卡解密前数据,通过串口发送 “读取的数据为:”至 PC 机并发送解密前的数据至 PC 机。在显示屏的 四行分别显示“读取成功”,“选择密钥解密”,“1.正确密钥”,“错误密 钥”,等待按键“1”或“2”按下。如果“1”按下,解密密钥为正确的 密钥,“2”按下,解密密钥为错误的密钥,然后通过串口发送“将使用 以下密钥进行解密:”并将相应的解密密钥数据发送至 PC 机。发送完毕, 第一行显示“A 键确认解密”,等待“A”键按下。
-
按下“A”键后,SM1 初始化;
-
进行 SM1 解密;
-
关闭 SM1 解密安全模块;
显示屏第二行显示“解密完成”,第三行显示“A 键返回”,通过串口将 “解密后的数据为:”和解密后的数据发送 至 PC 机,发送完毕等待“A” 键按下,若“A”键按下,跳转至 B 段程序。
-
断电,去除 IC 卡激活,实验结束。
实验步骤
-
用 9 针串口线将 Z32 模块的串口与电脑 USB 接口连接。 首先在电脑上打开串口助手,选择对应的串口号,设置波特率为 115200, 偶校验(Even),然后打开串口。
-
关闭 Z32 电源开关,再打开,程序自动运行,此时可以看到实验现象:显示屏显示“SLE4428 实验!请插入 IC 卡...”。
-
插入 SLE4428 IC 卡,显示屏第三行显示:“用户代码为:”,第四行显示用户 代码“D27600000400”。 如果插入错误的卡片,则显示屏第二行显示:“卡不正确”。
若插入了正确的卡片,显示出用户代码,再按下矩阵键盘的“A”键,屏幕 第一行显示提示“按-A 键校验密码”并在第二行显示两个字节的校验密码 “校验 0xFF,0xFF”。
-
按下矩阵键盘的“A”键,屏幕第三行显示“校验成功”,第四行显示校验 剩余机会“剩余机会:8 次”。
-
再按下矩阵键盘的“A”键,则屏幕第一行显示“加密解密实验”,第二、 三行分别显示选项“1.加密”,“2.解密”。 首先进行加密实验。按“1”键选择加密,屏幕第一行显示“观看串口调试 助手”,第二行显示“A 键确认加密”。此时,串口调试助手显示原始数据和 加密密钥。
-
按下“A”键确认加密后,屏幕第三行显示“加密完成”,第四行显示提示 “A 键存入 IC 卡”。串口调试助手显示加密后的数据。
-
按“A”键,将加密数据存入 IC 卡,此时串口显示“已将数据写入 IC 卡”。 屏幕回到加密解密实验选择菜单。
-
下面进行解密实验。按“2”键选择解密实验后屏幕显示“观看串口调试助手 A 键读取 IC 卡数据”。
-
按“A”键后,此时屏幕显示“读取成功 选择密钥解密:1.正确密钥 2.错 误密钥”。串口显示“读取的数据:为:0x7E 0xDC 0xA3 0x7B 0xBA 0x53 0x84 0xAC 0x0B 0x75 0x50 0x45 0x2E 0xEC 0x4F 0x4F”。
-
按“ 1”键选择正确的密钥后,屏幕提示“A 键确认解密”,此时串口显示“将 使用以下密钥进行解密:0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F”。
-
按“A” 键确认解密后,屏幕提示“解密完成 A 键返回”,此时串口显示 “解密后的数据为:0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F”。
-
按“A”键返回加/解密选择菜单。 如果使用错误秘钥进行解密,解密后将不能得到原始数据,在加/解密选择 菜单中按“2”进行解密实验,用错误的秘钥解密。屏幕提示“观看串口调试助手 A 键读取 IC 卡数据”。
-
按“A”键后,此时屏幕显示“读取成功 选择密钥解密:1.正确密钥 2.错 误密钥”。串口显示“读取的数据:为:0x7E 0xDC 0xA3 0x7B 0xBA 0x53 0x84 0xAC 0x0B 0x75 0x50 0x45 0x2E 0xEC 0x4F 0x4F”。
-
按“ 2”键选择错误的密钥后,屏幕提示“A 键确认解密”,此时串口显示“将 使用以下密钥进行解密:0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00”。
-
按“A” 键确认解密后,屏幕提示“解密完成 A 键返回”,此时串口显示 “解密后的数据为:0xB9 0x8C 0xB6 0x40 0xA2 0xD2 0x83 0xD0 0x64 0x6E 0x54 0x26 0x86 0x6D 0x5A 0xF5”。而正确的原始数据为:“0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F”
清理完善工作
实验中的问题及解决过程
-
问题一:破解MD5失败
-
解决:原因在于没有用管理员身份打开uVision4,重新开启后解决。
-
问题二:添加SC00库时不弹出芯片库 选择框。
-
解决:关闭后,再用管理员身份打开一次,结果成功。
-
问题三:用9针串口线将电脑与Z32部分连接后,打开串口助手,始终提示“没有串口接入”
-
解决:在“这台电脑或我的电脑”上右键“管理”。然后打开“设备管理器”中的“端口”,先禁用代表实验箱的关口,再启动,电脑就可以识别了。
新学到的知识点
通过本次实验我们学习到了以下知识点:
- 如何利用uVision4和MDK破解MD5;
- 如何在 keil MDKkeil 工程选择 SC000库;
- 如何定位Z32电子屏的某一行并显示相应的字符串;
- 如何通过串口助手实现试验箱Z32和电脑之间的数据传输和通信;
- 如何下载程序到试验箱;
- 如何利用SM1的库函数进行加解密。
本次实验未完成的部分
- 国密算法
- 在自己查阅相关资料未做出结果后向已完成的同学请教,还未能做出来。
- 查阅的相关资料
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· Winform-耗时操作导致界面渲染滞后
· Phi小模型开发教程:C#使用本地模型Phi视觉模型分析图像,实现图片分类、搜索等功能
· 语音处理 开源项目 EchoSharp
· drools 规则引擎和 solon-flow 哪个好?solon-flow 简明教程