Pytorch实现MNIST手写数字识别
Pytorch是热门的深度学习框架之一,通过经典的MNIST 数据集进行快速的pytorch入门。
导入库
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Normalize
from torch.utils.data import DataLoader
import torch
import torch.nn.functional as F
import torch.nn as nn
import os
import numpy as np
准备数据集
path = './data'
# 使用Compose 将tensor化和正则化操作打包
transform_fn = Compose([
ToTensor(),
Normalize(mean=(0.1307,), std=(0.3081,))
])
mnist_dataset = MNIST(root=path, train=True, transform=transform_fn)
data_loader = torch.utils.data.DataLoader(dataset=mnist_dataset, batch_size=2, shuffle=True)
# 1. 构建函数,数据集预处理
BATCH_SIZE = 128
TEST_BATCH_SIZE = 1000
def get_dataloader(train=True, batch_size=BATCH_SIZE):
'''
train=True, 获取训练集
train=False 获取测试集
'''
transform_fn = Compose([
ToTensor(),
Normalize(mean=(0.1307,), std=(0.3081,))
])
dataset = MNIST(root='./data', train=train, transform=transform_fn)
data_loader = DataLoader(dataset=dataset, batch_size=BATCH_SIZE, shuffle=True)
return data_loader
构建模型
class MnistModel(nn.Module):
def __init__(self):
super().__init__() # 继承父类
self.fc1 = nn.Linear(1*28*28, 28) # 添加全连接层
self.fc2 = nn.Linear(28, 10)
def forward(self, input):
x = input.view(-1, 1*28*28)
x = self.fc1(x)
x = F.relu(x)
out = self.fc2(x)
return F.log_softmax(out, dim=-1) # log_softmax 与 nll_loss合用,计算交叉熵
模型训练
mnist_model = MnistModel()
optimizer = torch.optim.Adam(params=mnist_model.parameters(), lr=0.001)
# 如果有模型则加载
if os.path.exists('./model'):
mnist_model.load_state_dict(torch.load('model/mnist_model.pkl'))
optimizer.load_state_dict(torch.load('model/optimizer.pkl'))
def train(epoch):
data_loader = get_dataloader()
for index, (data, target) in enumerate(data_loader):
optimizer.zero_grad() # 梯度先清零
output = mnist_model(data)
loss = F.nll_loss(output, target)
loss.backward() # 误差反向传播计算
optimizer.step() # 更新梯度
if index % 100 == 0:
# 保存训练模型
torch.save(mnist_model.state_dict(), 'model/mnist_model.pkl')
torch.save(optimizer.state_dict(), 'model/optimizer.pkl')
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, index * len(data), len(data_loader.dataset),
100. * index / len(data_loader), loss.item()))
for i in range(epoch=5):
train(i)
Train Epoch: 0 [0/60000 (0%)] Loss: 0.023078
Train Epoch: 0 [12800/60000 (21%)] Loss: 0.019347
Train Epoch: 0 [25600/60000 (43%)] Loss: 0.105870
Train Epoch: 0 [38400/60000 (64%)] Loss: 0.050866
Train Epoch: 0 [51200/60000 (85%)] Loss: 0.097995
Train Epoch: 1 [0/60000 (0%)] Loss: 0.108337
Train Epoch: 1 [12800/60000 (21%)] Loss: 0.071196
Train Epoch: 1 [25600/60000 (43%)] Loss: 0.022856
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.028392
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.070508
Train Epoch: 2 [0/60000 (0%)] Loss: 0.037416
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.075977
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.024356
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.042203
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.020883
Train Epoch: 3 [0/60000 (0%)] Loss: 0.023487
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.024403
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.073619
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.074042
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.036283
Train Epoch: 4 [0/60000 (0%)] Loss: 0.021305
Train Epoch: 4 [12800/60000 (21%)] Loss: 0.062750
Train Epoch: 4 [25600/60000 (43%)] Loss: 0.016911
Train Epoch: 4 [38400/60000 (64%)] Loss: 0.039599
Train Epoch: 4 [51200/60000 (85%)] Loss: 0.026689
模型测试
def test():
loss_list = []
acc_list = []
test_loader = get_dataloader(train=False, batch_size = TEST_BATCH_SIZE)
mnist_model.eval() # 设为评估模式
for index, (data, target) in enumerate(test_loader):
with torch.no_grad():
out = mnist_model(data)
loss = F.nll_loss(out, target)
loss_list.append(loss)
pred = out.data.max(1)[1]
acc = pred.eq(target).float().mean() # eq()函数用于将两个tensor中的元素对比,返回布尔值
acc_list.append(acc)
print('平均准确率, 平均损失', np.mean(acc_list), np.mean(loss_list))
test()
平均准确率, 平均损失 0.9662777 0.12309619
醉后不知天在水,满船清梦压星河。