conv2d
tf.nn.conv2d conv2d( input, filter, strides, padding, use_cudnn_on_gpu=True, data_format='NHWC', name=None )
参数列表:
参数名 |
必选 |
类型 |
说明 |
input |
是 |
tensor |
是一个 4 维的 tensor,即 [ batch, in_height, in_width, in_channels ](若 input 是图像,[ 训练时一个 batch 的图片数量, 图片高度, 图片宽度, 图像通道数 ]) |
filter |
是 |
tensor |
是一个 4 维的 tensor,即 [ filter_height, filter_width, in_channels, out_channels ](若 input 是图像,[ 卷积核的高度,卷积核的宽度,图像通道数,卷积核个数 ]),filter 的 in_channels 必须和 input 的 in_channels 相等 |
strides |
是 |
列表 |
长度为 4 的 list,卷积时候在 input 上每一维的步长,一般 strides[0] = strides[3] = 1 |
padding |
是 |
string |
只能为 " VALID "," SAME " 中之一,这个值决定了不同的卷积方式。VALID 丢弃方式;SAME:补全方式 |
use_cudnn_on_gpu |
否 |
bool |
是否使用 cudnn 加速,默认为 true |
data_format |
否 |
string |
只能是 " NHWC ", " NCHW ",默认 " NHWC " |
name |
否 |
string |
运算名称 |
import tensorflow as tf a = tf.constant([1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],dtype=tf.float32,shape=[1,5,5,1]) b = tf.constant([1,0,1,0,1,0,1,0,1],dtype=tf.float32,shape=[3,3,1,1]) c = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='VALID') d = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='SAME') with tf.Session() as sess: print ("c shape:") print (c.shape) print ("c value:") print (sess.run(c)) print ("d shape:") print (d.shape) print ("d value:") print (sess.run(d))
输出:
c shape: (1, 3, 3, 1) c value: [[[[ 4.] [ 3.] [ 4.]] [[ 2.] [ 4.] [ 3.]] [[ 2.] [ 3.] [ 4.]]]] d shape: (1, 5, 5, 1) d value: [[[[ 2.] [ 2.] [ 3.] [ 1.] [ 1.]] [[ 1.] [ 4.] [ 3.] [ 4.] [ 1.]] [[ 1.] [ 2.] [ 4.] [ 3.] [ 3.]] [[ 1.] [ 2.] [ 3.] [ 4.] [ 1.]] [[ 0.] [ 2.] [ 2.] [ 1.] [ 1.]]]]