pytorch 常见函数理解
gather
>>> a = torch.Tensor([[1,2],[3,4]]) >>> a tensor([[ 1., 2.], [ 3., 4.]]) >>> torch.gather(a,1,torch.LongTensor([ ... [0,0], ... [1,0]])) tensor([[ 1., 1.], [ 4., 3.]]) #1代表按照第1维度进行计算 #第一维也就是按照行,第一行[0,0]代表,新的tensor的第一行的两个元素,分别是a第一行的的第0个和第0个元素 #第一维也就是按照行,第二行[1,0]代表,新的tensor的第二行的两个元素,分别是a第二行的第1个和第0个元素 >>> torch.gather(a,0,torch.LongTensor([ ... [0,0], ... [1,0]])) tensor([[ 1., 2.], [ 3., 2.]]) #0代表按照第0维度进行计算 #第0维也就是按照列,第二列[0,0]代表,新的tensor的第二列的两个元素,分别是a第二列的第0个和第0个元素
squeeze
将维度为1的压缩掉。如size为(3,1,1,2),压缩之后为(3,2)
import torch a=torch.randn(2,1,1,3) print(a) print(a.squeeze())
输出:
tensor([[[[-0.2320, 0.9513, 1.1613]]], [[[ 0.0901, 0.9613, -0.9344]]]])
tensor([[-0.2320, 0.9513, 1.1613], [ 0.0901, 0.9613, -0.9344]])
expand
扩展某个size为1的维度。如(2,2,1)扩展为(2,2,3)
import torch x=torch.randn(2,2,1) print(x) y=x.expand(2,2,3) print(y)
输出:
tensor([[[ 0.0608], [ 2.2106]], [[-1.9287], [ 0.8748]]]) tensor([[[ 0.0608, 0.0608, 0.0608], [ 2.2106, 2.2106, 2.2106]], [[-1.9287, -1.9287, -1.9287], [ 0.8748, 0.8748, 0.8748]]])
参考:https://blog.csdn.net/hbu_pig/article/details/81454503
sum
size为(m,n,d)的张量,dim=1时,输出为size为(m,d)的张量
import torch a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]]) print(a.sum()) print(a.sum(dim=1))
输出:
tensor(60) tensor([[ 5, 10, 15], [ 5, 10, 15]])
contiguous
返回一个内存为连续的张量,如本身就是连续的,返回它自己。一般用在view()函数之前,因为view()要求调用张量是连续的。可以通过is_contiguous查看张量内存是否连续。
import torch a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]]) print(a.is_contiguous) print(a.contiguous().view(4,3))
输出:
<built-in method is_contiguous of Tensor object at 0x7f4b5e35afa0> tensor([[ 1, 2, 3], [ 4, 8, 12], [ 1, 2, 3], [ 4, 8, 12]])
softmax
假设数组V有C个元素。对其进行softmax等价于将V的每个元素的指数除以所有元素的指数之和。这会使值落在区间(0,1)上,并且和为1。
import torch import torch.nn.functional as F a=torch.tensor([[1.,1],[2,1],[3,1],[1,2],[1,3]]) b=F.softmax(a,dim=1) print(b)
输出:
tensor([[ 0.5000, 0.5000], [ 0.7311, 0.2689], [ 0.8808, 0.1192], [ 0.2689, 0.7311], [ 0.1192, 0.8808]])
max
返回最大值,或指定维度的最大值以及index
import torch a=torch.tensor([[.1,.2,.3], [1.1,1.2,1.3], [2.1,2.2,2.3], [3.1,3.2,3.3]]) print(a.max(dim=1)) print(a.max())
输出:
(tensor([ 0.3000, 1.3000, 2.3000, 3.3000]), tensor([ 2, 2, 2, 2])) tensor(3.3000)
argmax
返回最大值的index
import torch a=torch.tensor([[.1,.2,.3], [1.1,1.2,1.3], [2.1,2.2,2.3], [3.1,3.2,3.3]]) print(a.argmax(dim=1)) print(a.argmax(dim=0)) print(a.argmax())
输出:
tensor([ 2, 2, 2, 2]) tensor([ 3, 3, 3]) tensor(11)