「Luogu P2015」二叉苹果树 解题报告

题面

一个二叉树,边数为n\((2<n\le 100)\),每条边有一个权值,求剪枝后剩下p\((1<p<n)\)条边,使p条边的权值和最大

还看不懂?……

2   5		input:5 2		output:21
 \ /			1 3 1
  3   4			1 4 10
   \ /			2 3 20
    1			3 5 20

能理解了吧!

思路:

树形打屁DP

很基础的一道树形DP

对于每个点,用f[k][i]记录在以k为根的子树中,取i条枝的最大值

注意:

1、要注意叶子节点的判断

2、有可能只取一侧的子树

Code:

#include<bits/stdc++.h>
#define N 110
using namespace std;
int b[N][5],s[N];
int n,p;
int a[N][N],f[N][N];
int read()
{
	int s=0;
	char c=getchar();
	while(!isdigit(c))
		c=getchar();
	while(isdigit(c))
	{
		s=(s<<1)+(s<<3)+c-'0';
		c=getchar();
	}
	return s;
}
void DFS(int k,int fa)
{
	if(s[k]==1)//叶子节点直接返回
		return;
	int i,j;
	int l,r,value;
	l=r=0;
	for(i=1;i<=s[k];i++)//把l儿子和r儿子处理出来,其实不用严格区分l和r,因为效果是一样的
		if(b[k][i]!=fa)
		{
			if(!l)
				l=b[k][i];
			else
				r=b[k][i];
		}
	DFS(l,k);DFS(r,k);
	f[k][1]=max(a[k][l],a[k][r]);//
	for(i=0;i<=p-2;i++)//由于默认要选左枝和右枝,所以i要-2
	{
		f[k][i+2]=max(f[l][i+1]+a[k][l],f[r][i+1]+a[k][r]);//可能直选一边
		for(j=0;j<=i;j++)//分配左子树多少,右子树去多少枝,不用判断是否能够取满,因为取满的总是最优的
		{//不会影响
			value=f[l][j]+a[k][l]+f[r][i-j]+a[k][r];
			f[k][i+2]=max(f[k][i+2],value);
		}
	}
	return;
}
int main()
{
	int i,x,y;
	n=read();p=read();
	for(i=1;i<n;i++)
	{
		x=read(),y=read(),a[x][y]=read();//矩阵存边权
		b[x][++s[x]]=y;b[y][++s[y]]=x;//存边,由于边数不多,直接用邻接表存,不用链式前向星
	}
	DFS(1,0);//以1为根遍历数
	printf("%d",f[1][p]);//输出最后结果
	return 0;
}
posted @ 2019-01-05 08:51  h^ovny  阅读(142)  评论(0编辑  收藏  举报