「Luogu P2508」[HAOI2008]圆上的整点 解题报告

题面

给定圆的半径,求圆上整点数

这是一道很Nice的数学题!超爱!好吧,由于这道题,我去Study了一下复数(complex number)复杂的数

真棒!!!

有兴趣的戳这里!!!\(\huge \to\)

思路:

高斯素数的原理,将整数分解质因数后,再把每个质因数分解成高斯素数,对于质数4n+1,它可以有效的分解成高斯素数,而质数4n+3不能,因为3无法分解为高斯素数,所以当一个数有奇数个3因子时,这个圆上没有整点,而3的个数为偶数时,由于能分成两组配对,所以有整点,但3对Ans的影响为0,因为x*1=x,因此只要不变就行了,当由于2的高斯素数表示为1-i*1+i,所以2的个数对Ans无影响

对于25如下:

\[\large 25=5 \times 5 \]

\[\large 25=(2-i)(2+i)(2-i)(2+i) \]

所以:

Left Right
\(\large 1\) \(\large 1\)
\(\large 2-i\) \(\large 2+i\)
\(\large 2-i\) \(\large 2+i\)
\(\large =3-4i\) \(\large =3+4i\)

这是一种情况\(\large (3,-4)\)

Left Right
\(\large 2-i\) \(\large 2-i\)
\(\large 2+i\) \(\large 2+i\)
\(\large =5\) \(\large =5\)

这是一种情况\(\large (5,0)\)

Left Right
\(\large 2+i\) \(\large 2+i\)
\(\large 2+i\) \(\large 2+i\)
\(\large =3+4i\) \(\large =3-4i\)

这是一种情况\(\large (3,-4)\)

而对于上述

\(\large \times\) \(\large 3-4i\) \(\large 5\) \(\large 3+4i\)
\(\large -1\) \(\large -1+4i\) \(-5\) \(\large -3-4i\)
\(\large i\) \(\large 4+3i\) \(\large 5i\) \(\large -4+3i\)
\(\large -i\) \(\large -4-3i\) \(\large -5i\) \(\large 4-3i\)

所以一共有点对12

那么高斯素数怎么表示点呢?

它只要一个数,就可以表示点的坐标,RT:

Code:

#include<bits/stdc++.h>
#define N 10000010
#define ll long long
using namespace std;
ll n,m,res,ans=4;
ll a[N],t,T;
ll p[N];
ll s[N];
bool b[N];
int main()
{
	ll i,j;
	scanf("%lld",&n);
	m=n;
	for(i=2;i*i<=m;i++)
	{
		if(!b[i])
		{
			a[++T]=i;
			if(m%i==0)
			{
				p[++t]=i;
				while(m%i==0)
				{
					m/=i;
					s[t]++;
				}
			}
		}
		for(j=1;j<=T;j++)
		{
			if(a[j]*i*i*a[j]>m)
				continue;
			b[a[j]*i]=1;
			if(i%a[j]==0)
				continue;
		}
	}
	if(m>1)
	{
		p[++t]=m;
		s[t]=1;
	}
	for(i=1;i<=t;i++)
		if((p[i]-1)%4==0)
			ans*=(2*s[i]+1);
	printf("%lld",ans);
	return 0;
}
posted @ 2018-12-29 12:15  h^ovny  阅读(229)  评论(0编辑  收藏  举报