MXNET:多层感知机

作者:@houkai
本文为作者原创,转载请注明出处:https://www.cnblogs.com/houkai/p/9520970.html


从零开始

前面了解了多层感知机的原理,我们来实现一个多层感知机。

# -*- coding: utf-8 -*-
from mxnet import init

from mxnet import ndarray as nd
from mxnet.gluon import loss as gloss
import gb

# 定义数据源
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

# 定义模型参数
num_inputs = 784
num_outputs = 10
num_hiddens = 256

W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))
b2 = nd.zeros(num_outputs)
params = [W1, b1, W2, b2]

for param in params:
    param.attach_grad()

# 定义激活函数
def relu(X):
    return nd.maximum(X, 0)

# 定义模型
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(nd.dot(X, W1) + b1)
    return nd.dot(H, W2) + b2

# 定义损失函数
loss = gloss.SoftmaxCrossEntropyLoss()

# 训练模型
num_epochs = 5
lr = 0.5
gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size,
             params, lr)

添加隐层后,模型的性能大幅提升

# output
epoch 1, loss 0.5029, train acc 0.852, test acc 0.934
epoch 2, loss 0.2000, train acc 0.943, test acc 0.956
epoch 3, loss 0.1431, train acc 0.959, test acc 0.964
epoch 4, loss 0.1138, train acc 0.967, test acc 0.968
epoch 5, loss 0.0939, train acc 0.973, test acc 0.973

在定义模型参数和定义模型步骤,仍然有一些繁琐。

使用Gluon

# -*- coding: utf-8 -*-
from mxnet import init

from mxnet import ndarray as nd
from mxnet.gluon import loss as gloss
import gb

# 定义数据源
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

# 定义模型
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

# 定义损失函数
loss = gloss.SoftmaxCrossEntropyLoss()

# 训练模型
from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
num_epochs = 5
gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size,
             None, None, trainer)

# output
epoch 1, loss 1.3065, train acc 0.525, test acc 0.814
epoch 2, loss 0.2480, train acc 0.928, test acc 0.950
epoch 3, loss 0.1442, train acc 0.958, test acc 0.961
epoch 4, loss 0.1060, train acc 0.969, test acc 0.971
epoch 5, loss 0.0807, train acc 0.976, test acc 0.973
posted @   侯凯  阅读(494)  评论(0编辑  收藏  举报
编辑推荐:
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
阅读排行:
· 手把手教你更优雅的享受 DeepSeek
· 腾讯元宝接入 DeepSeek R1 模型,支持深度思考 + 联网搜索,好用不卡机!
· AI工具推荐:领先的开源 AI 代码助手——Continue
· 探秘Transformer系列之(2)---总体架构
· V-Control:一个基于 .NET MAUI 的开箱即用的UI组件库
点击右上角即可分享
微信分享提示