opencv源码:cascadedetect

级联分类器检测类CascadeClassifier,提供了两个重要的方法:

CascadeClassifier cascade_classifier;
cascade_classifier.load( cascade_dir + cascade_name );// 加载
vector<Rect> object_rect;
cascade_classifier.detectMultiScale( img1, object_rect, 1.1, min_win, 0|CASCADE_SCALE_IMAGE, Size(32,32) );// 识别

头文件:objdetect.hpp,实现在cascadedetect.cpp中。

CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT vector<Rect>& objects,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size() );

代码的实现:

void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
                                          double scaleFactor, int minNeighbors,
                                          int flags, Size minObjectSize, Size maxObjectSize)
{
    vector<int> fakeLevels;
    vector<double> fakeWeights;
    detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
        minNeighbors, flags, minObjectSize, maxObjectSize, false );
}

fakeLevels是检测未通过层的级数,fakeWeights是未通过层的强分类器的输出,不使用时outputRejectLevels=false。

//检测函数
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
                                          vector<int>& rejectLevels,
                                          vector<double>& levelWeights,
                                          double scaleFactor, int minNeighbors,
                                          int flags, Size minObjectSize, Size maxObjectSize,
                                          bool outputRejectLevels )
{
    const double GROUP_EPS = 0.2;

    CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );

    if( empty() )
        return;

    if( isOldFormatCascade() )
    {
        MemStorage storage(cvCreateMemStorage(0));
        CvMat _image = image;
        CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
                                              minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
        vector<CvAvgComp> vecAvgComp;
        Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
        objects.resize(vecAvgComp.size());
        std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
        return;
    }

    objects.clear();

    if (!maskGenerator.empty()) {
        maskGenerator->initializeMask(image);
    }


    if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
        maxObjectSize = image.size();

    Mat grayImage = image;
    if( grayImage.channels() > 1 )
    {
        Mat temp;
        cvtColor(grayImage, temp, CV_BGR2GRAY);
        grayImage = temp;
    }

    Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
    vector<Rect> candidates;

    for( double factor = 1; ; factor *= scaleFactor )
    {
        Size originalWindowSize = getOriginalWindowSize();

        Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
        Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
        Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height );

        if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
            break;
        if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
            break;
        if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
            continue;
        //缩放图片
        Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
        resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
        //计算步长
        int yStep;
        if( getFeatureType() == cv::FeatureEvaluator::HOG )
        {
            yStep = 4;
        }
        else
        {
            yStep = factor > 2. ? 1 : 2;
        }

        int stripCount, stripSize;

        const int PTS_PER_THREAD = 1000;
        stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
        stripCount = std::min(std::max(stripCount, 1), 100);
        stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
        // 调用单尺度检测函数进行检测
        if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
            rejectLevels, levelWeights, outputRejectLevels ) )
            break;
    }


    objects.resize(candidates.size());
    std::copy(candidates.begin(), candidates.end(), objects.begin());
    //合并检测结果
    if( outputRejectLevels )
    {
        groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
    }
    else
    {
        groupRectangles( objects, minNeighbors, GROUP_EPS );
    }
}

函数的工作:检测各个尺寸的图片,然后合并检测结果。具体单尺寸的检测见:

bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
                                           int stripSize, int yStep, double factor, vector<Rect>& candidates,
                                           vector<int>& levels, vector<double>& weights, bool outputRejectLevels )
{
    // 计算当前图像的积分图
    if( !featureEvaluator->setImage( image, data.origWinSize ) )
        return false;

#if defined (LOG_CASCADE_STATISTIC)
    logger.setImage(image);
#endif

    Mat currentMask;
    if (!maskGenerator.empty()) {
        currentMask=maskGenerator->generateMask(image);
    }

    vector<Rect> candidatesVector;
    vector<int> rejectLevels;
    vector<double> levelWeights;
    Mutex mtx;
    if( outputRejectLevels )
    {
        parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
            candidatesVector, rejectLevels, levelWeights, true, currentMask, &mtx));
        levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
        weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
    }
    else
    {
        //CascadeClassifierInvoker函数的operator()实现具体的检测过程
         parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
            candidatesVector, rejectLevels, levelWeights, false, currentMask, &mtx));
    }
    candidates.insert( candidates.end(), candidatesVector.begin(), candidatesVector.end() );

#if defined (LOG_CASCADE_STATISTIC)
    logger.write();
#endif

    return true;
}

进而:

CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor,
    vector<Rect>& _vec, vector<int>& _levels, vector<double>& _weights, bool outputLevels, const Mat& _mask, Mutex* _mtx)
{
    classifier = &_cc;
    processingRectSize = _sz1;
    stripSize = _stripSize;
    yStep = _yStep;
    scalingFactor = _factor;
    rectangles = &_vec;
    rejectLevels = outputLevels ? &_levels : 0;
    levelWeights = outputLevels ? &_weights : 0;
    mask = _mask;
    mtx = _mtx;
}

void operator()(const Range& range) const
{
    Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();

    Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));

    int y1 = range.start * stripSize;
    int y2 = min(range.end * stripSize, processingRectSize.height);
    for( int y = y1; y < y2; y += yStep )
    {
        for( int x = 0; x < processingRectSize.width; x += yStep )
        {
            if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) {
                continue;
            }

            double gypWeight;
            int result = classifier->runAt(evaluator, Point(x, y), gypWeight);

#if defined (LOG_CASCADE_STATISTIC)

            logger.setPoint(Point(x, y), result);
#endif
            //是否返回级数
            if( rejectLevels )
            {
                if( result == 1 )
                    result =  -(int)classifier->data.stages.size();
                if( classifier->data.stages.size() + result < 4 )
                {
                    mtx->lock();
                    rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height));
                    rejectLevels->push_back(-result);
                    levelWeights->push_back(gypWeight);
                    mtx->unlock();
                }
            }
            else if( result > 0 )
            {
                mtx->lock();
                //添加检测得到的矩形框(还原到原图)
                rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
                                           winSize.width, winSize.height));
                mtx->unlock();
            }
            // 如果一级都没有通过那么加大搜索步长
            if( result == 0 )
                x += yStep;
        }
    }
}

检测框的合并过程:

void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
{
    groupRectangles(rectList, groupThreshold, eps, 0, 0);
}

进而:

void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
{
    if( groupThreshold <= 0 || rectList.empty() )
    {
        if( weights )
        {
            size_t i, sz = rectList.size();
            weights->resize(sz);
            for( i = 0; i < sz; i++ )
                (*weights)[i] = 1;
        }
        return;
    }

    vector<int> labels;
    //对rectList中的矩形进行分类
    int nclasses = partition(rectList, labels, SimilarRects(eps));

    vector<Rect> rrects(nclasses);
    vector<int> rweights(nclasses, 0);
    vector<int> rejectLevels(nclasses, 0);
    vector<double> rejectWeights(nclasses, DBL_MIN);
    int i, j, nlabels = (int)labels.size();
    //组合分到同一类别的矩形并保存当前类别下通过stage的最大值以及最大的权重
    for( i = 0; i < nlabels; i++ )
    {
        int cls = labels[i];
        rrects[cls].x += rectList[i].x;
        rrects[cls].y += rectList[i].y;
        rrects[cls].width += rectList[i].width;
        rrects[cls].height += rectList[i].height;
        rweights[cls]++;
    }
    if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
    {
        for( i = 0; i < nlabels; i++ )
        {
            int cls = labels[i];
            if( (*weights)[i] > rejectLevels[cls] )
            {
                rejectLevels[cls] = (*weights)[i];
                rejectWeights[cls] = (*levelWeights)[i];
            }
            else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
                rejectWeights[cls] = (*levelWeights)[i];
        }
    }

    for( i = 0; i < nclasses; i++ )
    {
        Rect r = rrects[i];
        float s = 1.f/rweights[i];
        rrects[i] = Rect(saturate_cast<int>(r.x*s),
             saturate_cast<int>(r.y*s),
             saturate_cast<int>(r.width*s),
             saturate_cast<int>(r.height*s));
    }

    rectList.clear();
    if( weights )
        weights->clear();
    if( levelWeights )
        levelWeights->clear();
    //按照groupThreshold合并规则,以及是否存在包含关系输出合并后的矩形
    for( i = 0; i < nclasses; i++ )
    {
        Rect r1 = rrects[i];
        int n1 = levelWeights ? rejectLevels[i] : rweights[i];
        double w1 = rejectWeights[i];
        if( n1 <= groupThreshold )
            continue;
        // filter out small face rectangles inside large rectangles
        for( j = 0; j < nclasses; j++ )
        {
            int n2 = rweights[j];

            if( j == i || n2 <= groupThreshold )
                continue;
            Rect r2 = rrects[j];

            int dx = saturate_cast<int>( r2.width * eps );
            int dy = saturate_cast<int>( r2.height * eps );
            // 当r1在r2的内部的时候,停止
            if( i != j &&
                r1.x >= r2.x - dx &&
                r1.y >= r2.y - dy &&
                r1.x + r1.width <= r2.x + r2.width + dx &&
                r1.y + r1.height <= r2.y + r2.height + dy &&
                (n2 > std::max(3, n1) || n1 < 3) )
                break;
        }

        if( j == nclasses )
        {
            rectList.push_back(r1);
            if( weights )
                weights->push_back(n1);
            if( levelWeights )
                levelWeights->push_back(w1);
        }
    }
}

其中:

class CV_EXPORTS SimilarRects
{
public:
    SimilarRects(double _eps) : eps(_eps) {}
    inline bool operator()(const Rect& r1, const Rect& r2) const
    {
        double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
        return std::abs(r1.x - r2.x) <= delta &&
            std::abs(r1.y - r2.y) <= delta &&
            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
    }
    double eps;
};

参考:http://blog.csdn.net/xidianzhimeng/article/details/41851569

        http://blog.csdn.net/xidianzhimeng/article/details/40107763

        http://docs.opencv.org/modules/core/doc/clustering.html#partition

posted @ 2015-10-09 17:20  侯凯  阅读(2442)  评论(0编辑  收藏  举报