tf更新tensor/自定义层
作者:@houkai
本文为作者原创,转载请注明出处:https://www.cnblogs.com/houkai/p/10333164.html
修改Tensor特定位置的值
如 stack overflow 中提到的方案。
TensorFlow不让你直接单独改指定位置的值,但是留了个歪门儿,就是tf.scatter_update这个方法,它可以批量替换张量某一维上的所有数据。
def set_value(matrix, x, y, val):
# 提取出要更新的行
row = tf.gather(matrix, x)
# 构造这行的新数据
new_row = tf.concat([row[:y], [val], row[y+1:]], axis=0)
# 使用 tf.scatter_update 方法进正行替换
matrix.assign(tf.scatter_update(matrix, x, new_row))
但是这么做有没什么缺点呢?有,那就是慢,特别是矩阵很大的时候,那是真心的慢。
TensorFlow是对张量运算(其实二维的就是矩阵运算)有速度优化的,能不能将张量修改的操作变成一个普通的张量运算呢?能,再构建一个差值张量然后做个加法,哎,又是一条旁门邪道。
def set_value(matrix, x, y, val):
# 得到张量的宽和高,即第一维和第二维的Size
w = int(matrix.get_shape()[0])
h = int(matrix.get_shape()[1])
# 构造一个只有目标位置有值的稀疏矩阵,其值为目标值于原始值的差
val_diff = val - matrix[x][y]
diff_matrix = tf.sparse_tensor_to_dense(tf.SparseTensor(indices=[x, y], values=[val_diff], dense_shape=[w, h]))
# 用 Variable.assign_add 将两个矩阵相加
matrix.assign_add(diff_matrix)
cs20si课程作业1的第3题 后一种方法的效率大概提升了4倍。
Shuffling input files with tensorflow Datasets
按文件列表顺序读取
BUFFER_SIZE = 1000 # arbitrary number
# define filenames somewhere, e.g. via glob
dataset = tf.data.TFRecordDataset(filenames).shuffle(BUFFER_SIZE)
shuffle文件,然后读取
dataset = tf.data.Dataset.from_tensor_slices(filenames)
dataset = dataset.shuffle(BUFFER_SIZE) # doesn't need to be big
dataset = dataset.flat_map(tf.data.TFRecordDataset)
dataset = dataset.map(decode_example, num_parallel_calls=5) # add your decoding logic here
# further processing of the dataset
同时从多个文件读取
dataset = dataset.interleave(tf.data.TFRecordDataset, cycle_length=4)
TF自定义梯度
多个op
See also tf.RegisterGradient which registers a gradient function for a primitive TensorFlow operation. tf.custom_gradient on the other hand allows for fine grained control over the gradient computation of a sequence of operations.
keras 不支持 去用pytorch吧
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架