【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

Description

    有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

    输入包含多组数据。
    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

    对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148

HINT

1 < =N.m < =10^5  , 1 < =Q < =2×10^4

Source

Round 1 Day 1

【分析】

其实是个比较水的题目。

 $\sum\limits_{i <  = n\ {\rm{ j <  = m}}}^{} { F(gcd(i,j))} $其中gcd(i,j) <= a,F(i),为i的因子和。
我们可以将公式变形,先忽略gcd(i, j) <= a这个条件。
$\sum\limits_{i = 1}^{\min (n,m)} {F(i) \times num(i)} $      num(i)为i在 gcd(i,j) (i <=n, j <= m)中出现的次数。
易得:
$num(i) = \sum\limits_{i|d} {\mu (\frac{d}{i}) \times \left\lfloor {\frac{n}{d}} \right\rfloor }  \times \left\lfloor {\frac{m}{d}} \right\rfloor $
然后原式可以化为:
$\sum\limits_{i = 1}^{\min (n,m)} {F(i)}  \times \sum\limits_{i|d} {\mu (\frac{d}{i}) \times \left\lfloor {\frac{n}{d}} \right\rfloor }  \times \left\lfloor {\frac{m}{d}} \right\rfloor$
换元:
$\sum\limits_{d = 1}^{\min (n,m)} {\left\lfloor {\frac{m}{d}} \right\rfloor \left\lfloor {\frac{m}{d}} \right\rfloor } \sum\limits_{i|d} {F(i)\mu (\frac{d}{i})} $
然后再把$\sum\limits_{i|d} {F(i)\mu (\frac{d}{i})} $预处理出来,对询问以a为关键字排序,用树状数组记录一段的和,前面用分块,然后就可以做了。
  1 /*
  2 唐代杜牧的《遣怀》
  3 落魄江南载酒行,楚腰纤细掌中轻。
  4 十年一觉扬州梦,赢得青楼薄幸名。 
  5 */
  6 #include <cstdio>
  7 #include <cstring>
  8 #include <algorithm>
  9 #include <cmath>
 10 #include <queue>
 11 #include <vector>
 12 #include <iostream>
 13 #include <string>
 14 #include <ctime>
 15 #include <map>
 16 #include <set> 
 17 #define LOCAL
 18 long long MOD = 1000000000 + 7;
 19 const int MAXM = 1000 * 1000 + 10;
 20 const int MAXN = 100000 + 10;
 21 using namespace std;
 22 //输入输出优化 
 23 int read(){
 24     int x = 0, flag = 1;
 25     char ch = getchar();
 26     while (ch < '1' || ch >'9') {if (ch == '-') flag = -1; ch = getchar();}
 27     while (ch >= '0' && ch <= '9') {x = x * 10 + (ch - '0'); ch = getchar();}
 28     return x * flag;
 29 }
 30 struct FF{
 31     int order;//order表示该num对应的gcd值
 32     int num;
 33     bool operator < (const FF &b)const{
 34         return num < b.num;
 35     }
 36 }F[MAXN];
 37 struct QUERY{
 38     int l, r, a, order;
 39     bool operator < (const QUERY &b)const{
 40         return a < b.a;
 41     }
 42 }q[MAXN];
 43 int mu[MAXN], prime[MAXN];
 44 int g[MAXN], C[MAXN], Q, Ans[MAXN];
 45 
 46 int lowbit(int x){return x & -x;}
 47 void add(int x, int val){
 48     while (x <= 100000){
 49         C[x] += val;
 50         x += lowbit(x);
 51     }
 52     return;
 53 }
 54 int sum(int x){
 55     int cnt = 0;
 56     while (x > 0){
 57         cnt += C[x];
 58         x -= lowbit(x);
 59     }
 60     return cnt;
 61 }
 62 void prepare(){
 63     memset(prime, 0, sizeof(prime));
 64     memset(C, 0, sizeof(C));
 65     
 66     mu[1] = 1;
 67     for (int i = 2;i <= 100000; i++){
 68         if (!prime[i]){
 69             prime[++prime[0]] = i;
 70             mu[i] = -1;
 71         }
 72         for (int j = 1; j <= prime[0]; j++){
 73             if (i * prime[j] > 100000) break;
 74             prime[i * prime[j]] = 1;
 75             if (i % prime[j] == 0){
 76                 mu[i * prime[j]] = 0;
 77                 break;
 78             }else mu[i * prime[j]] = -mu[i];
 79         }
 80     }
 81     //F[i]代表i的因数和
 82     F[1].num = F[1].order = 1;
 83     for (int i = 2; i <= 100000; i++){
 84         int cnt = 0;
 85         for (long long j = 1; j * (long long)j <= (long long)i; j++){
 86             if (j * j == i){cnt += j; break;}
 87             if (i % j != 0) continue;
 88             cnt += j + (i / j);
 89         }
 90         F[i].num = cnt;
 91         F[i].order = i;
 92     }
 93     sort(F + 1, F + 1 + 100000);
 94     //for (int i = 1; i <= 100; i++) printf("%d\n", mu[i]);
 95 }
 96 void init(){
 97     scanf("%d", &Q);
 98     for (int i = 1; i <= Q; i++){
 99         int l = read(), r = read(), a = read();
100         q[i].l = l; q[i].r = r;
101         q[i].a = a; q[i].order = i;
102     }
103     sort(q + 1, q + 1 + Q);
104 }
105 //直接回答第x个询问
106 int query(int x){
107     int cnt = 0;
108     for (int i = 1; i <= min(q[x].l, q[x].r); i++){
109         int t = min(q[x].l / (q[x].l / i), q[x].r / (q[x].r / i));
110         cnt += (q[x].l / i) * (q[x].r / i) * (sum(t) - sum(i - 1));
111         i = t;
112     }
113     return cnt;
114 }
115 void work(){
116     int pos = 1;//表示a现在的大小
117     for (int i = 1; i <= Q; i++){
118         while (F[pos].num <= q[i].a && pos <= 100000){
119             for (int j = 1; j * F[pos].order <= 100000; j++)
120                 add(j * F[pos].order, F[pos].num * mu[j]);
121             pos++;
122         }
123         Ans[q[i].order] = query(i);
124     }
125     for (int i = 1; i <= Q; i++) printf("%d\n", Ans[i] & 0x7fffffff);
126 }
127 
128 int main(){
129     int T;
130 
131      prepare();
132      init();
133      work();
134      return 0;
135 }
136  
View Code

 

 

(k=1nakbk)2(k=1na2k)(k=1nb2k)
posted @ 2015-04-01 10:35  TCtower  阅读(337)  评论(0编辑  收藏  举报