BFPRT算法
解决的问题:在一个数组中找到最小的k个数
常规解法:1、排序,输出前k个数,时间复杂度O(n*log(n))。
2、利用一个大小为k的大根堆,遍历数组维持大根堆,最后返回大根堆就可以了,时间复杂度O(n*log(k))。
BFPRT解法:
利用快速排序的思路,选取一个划分值,小于这个数的放右边,等于这个数的放中间,大于这个数的放右边。如下图:
这样我们就可以把问题转化为:在这个数组中找第k小的数,然后把k左边的数返回就可以得到最小的k个数了。
上图可得到两个边界值L,R,与k进行比较,如果L,R中有一个与K相等表示,已经找到k了。
BFPRT的流程(时间复杂度O(n)):
1、把数组分成以大小为5的小组,最后面不足5个的,单独一组。(至于为什么是以5为单位,因为这个算法是由BFPRT这五个人发明的)。
2、每个小组内排序。
3、把每个小组内的中位数拿出来组成大小为 n/5 的数组,再去这个数组中的中位数,便得到了我们所需要的划分值X。
4、递归上述流程。如:(如果k < L,则在(0~L)中找,
如果 L < k < R,就在(L~R)中寻找,
如果K > R,就在(R~N)中寻找 )。
代码:
package basic_class_02;
public class Code_06_BFPRT {
// 解决的问题:找到一个数组最小的k个数
// O(N*logK)
public static int[] getMinKNumsByHeap(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int[] kHeap = new int[k];
for (int i = 0; i != k; i++) { // 建立一个大根堆,堆的大小为 k
heapInsert(kHeap, arr[i], i);
}
for (int i = k; i != arr.length; i++) { // 把之后的 arr 数组中,下标k之后的数依次加入大根堆
if (arr[i] < kHeap[0]) { // 如果比堆顶要小,加入大根堆
kHeap[0] = arr[i];
heapify(kHeap, 0, k);
}
}
return kHeap;
}
public static void heapInsert(int[] arr, int value, int index) {
arr[index] = value;
while (index != 0) {
int parent = (index - 1) / 2;
if (arr[parent] < arr[index]) {
swap(arr, parent, index);
index = parent;
} else {
break;
}
}
}
public static void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1;
int right = index * 2 + 2;
int largest = index;
while (left < heapSize) {
if (arr[left] > arr[index]) {
largest = left;
}
if (right < heapSize && arr[right] > arr[largest]) {
largest = right;
}
if (largest != index) {
swap(arr, largest, index);
} else {
break;
}
index = largest;
left = index * 2 + 1;
right = index * 2 + 2;
}
}
// O(N)
public static int[] getMinKNumsByBFPRT(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int minKth = getMinKthByBFPRT(arr, k);
int[] res = new int[k];
int index = 0;
for (int i = 0; i != arr.length; i++) {
if (arr[i] < minKth) {
res[index++] = arr[i];
}
}
for (; index != res.length; index++) {
res[index] = minKth;
}
return res;
}
public static int getMinKthByBFPRT(int[] arr, int K) {
int[] copyArr = copyArray(arr);
return select(copyArr, 0, copyArr.length - 1, K - 1);
}
public static int[] copyArray(int[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i != res.length; i++) {
res[i] = arr[i];
}
return res;
}
public static int select(int[] arr, int begin, int end, int i) {
if (begin == end) {
return arr[begin];
}
int pivot = medianOfMedians(arr, begin, end);
int[] pivotRange = partition(arr, begin, end, pivot);
if (i >= pivotRange[0] && i <= pivotRange[1]) {
return arr[i];
} else if (i < pivotRange[0]) {
return select(arr, begin, pivotRange[0] - 1, i);
} else {
return select(arr, pivotRange[1] + 1, end, i);
}
}
public static int medianOfMedians(int[] arr, int begin, int end) {
int num = end - begin + 1;
int offset = num % 5 == 0 ? 0 : 1;
int[] mArr = new int[num / 5 + offset];
for (int i = 0; i < mArr.length; i++) {
int beginI = begin + i * 5;
int endI = beginI + 4;
mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
}
return select(mArr, 0, mArr.length - 1, mArr.length / 2);
}
public static int[] partition(int[] arr, int begin, int end, int pivotValue) {
int small = begin - 1;
int cur = begin;
int big = end + 1;
while (cur != big) {
if (arr[cur] < pivotValue) {
swap(arr, ++small, cur++);
} else if (arr[cur] > pivotValue) {
swap(arr, cur, --big);
} else {
cur++;
}
}
int[] range = new int[2];
range[0] = small + 1;
range[1] = big - 1;
return range;
}
public static int getMedian(int[] arr, int begin, int end) {
insertionSort(arr, begin, end);
int sum = end + begin;
int mid = (sum / 2) + (sum % 2);
return arr[mid];
}
public static void insertionSort(int[] arr, int begin, int end) {
for (int i = begin + 1; i != end + 1; i++) {
for (int j = i; j != begin; j--) {
if (arr[j - 1] > arr[j]) {
swap(arr, j - 1, j);
} else {
break;
}
}
}
}
public static void swap(int[] arr, int index1, int index2) {
int tmp = arr[index1];
arr[index1] = arr[index2];
arr[index2] = tmp;
}
public static void printArray(int[] arr) {
for (int i = 0; i != arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
public static void main(String[] args) {
int[] arr = { 6, 9, 1, 3, 1, 2, 2, 5, 6, 1, 3, 5, 9, 7, 2, 5, 6, 1, 9 };
// sorted : { 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 9, 9, 9 }
printArray(getMinKNumsByHeap(arr, 10));
printArray(getMinKNumsByBFPRT(arr, 10));
}
}