lambda(),map(),filter()
Lambda 表达式
匿名函数(英语:anonymous function)是指一类无需定义标识符(函数名)的函数。通俗来说呢,就是它可以让我们的函数,可以不需要函数名。
正常情况下,我们定义一个函数,使用的是 def 关键字,而当你学会使用匿名函数后,替代 def 的是 lambda。
这边使用 def 和 lambda 分别举个例子,你很快就能理解。
>>> def mySum(x,y): return x + y >>> mySum(2,3) 5 >>> (lambda x,y: x+y)(2,3) 5
从上面的示例,我们可以看到匿名函数直接运行,省下了很多行的代码,有没有?
接下来,我们的仔细看一下它的用法
带 if/else
>>> (lambda x, y: x if x < y else y )( 1, 2 ) 1
嵌套函数
>>> ( lambda x: ( lambda y: ( lambda z: x + y + z )( 1 ) )( 2 ) )( 3 ) 6
递归函数
>>> func = lambda n:1 if n == 0 else n * func(n-1) >>> func(5) 120
或者
>>> f = lambda func, n: 1 if n == 0 else n * func( func, n - 1 ) >>> f(f,4) 24
从以上示例来看,lambda 表达式和常规的函数相比,写法比较怪异,可读性相对较差。除了可以直接运行之外,好像并没有其他较为突出的功能,为什么在今天我们要介绍它呢?
首先我们要知道 lambda 是一个表达式,而不是一个语句。正因为这个特点,我们可以在一些特殊的场景中去使用它。具体是什么场景呢?接下来我们会介绍到几个非常好用的内置函数。
Map 函数
map 函数,它接收两个参数,第一个参数是一个函数对象(当然也可以是一个lambda表达式),第二个参数是一个序列。
它可以实现怎样的功能呢,我举个例子你就明白了。
>>> list(map(lambda x: x*2, [1,2,3,4,5])) [2, 4, 6, 8, 10]
可以很清楚地看到,它可以将后面序列中的每一个元素做为参数传入lambda中。
当我们不使用 map 函数时,你也许会这样子写。
mylist=[] for i in [1,2,3,4,5]: mylist.append(i*2)
关于map函数举个栗子:
# 利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。 # 输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart']: l = ['adam', 'LISA', 'barT'] def normalize(name): return name[0].upper()+name[1:].lower() def normalizeList(inputlist): return list(map(normalize, inputlist)) #list()可以把map object直接转为列表 print(normalizeList(l))
Filter 函数
filter 函数,和 map 函数相似。同样也是接收两个参数,一个lambda 表达式,一个序列。它会遍历后面序列中每一个元素,并将其做为参数传入lambda表达式中,当表达式返回 True,则元素会被保留下来,当表达式返回 False ,则元素会被丢弃。
下面这个例子,将过滤出一个列表中小于0的元素。
>>> list(filter(lambda x: x < 0, range(-5, 5))) [-5, -4, -3, -2, -1]
关于lambda表达式、map函数、filter函数举个栗子:
Reduce 函数
reduce 函数,也是类似的。它的作用是先对序列中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 lambda 函数运算,将其得到的结果再与第四个元素进行运算,以此类推下去直到后面没有元素了。
>>> from functools import reduce >>> reduce(lambda x,y: x+y, [1,2,3,4,5]) 15
它的运算过程分解一下是这样的:
1+2=3 3+3=6 6+4=10 10+5=15