题目链接:《Humble Numbers》
题意:如果一个数的所有质数因子都来自于 { 2, 3, 5, 7 } 这个集合,就把这个数字叫做“谦逊数”,或者“低调数”(Humble Number),现在给出一个数字 i (1 <= i <= 5842),要求输出第 i 个 humble number。比如说,前 20 个 humble number 是:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27。
分析:这个题目的描述是非常简单的。从 i 的限定范围最大是 5842 以及范例输出来看,很显然出题人暗示了我们这个题目中涉及到的 humber number 不会超出 int 的范围。因此我们可以放心的使用 int,而不用担心超出表示范围。
其次可以很容易的想到,需要一个 int 数组,把需要的所有 humber number 放进去作为供查询的表。但是生成这个表会比较耗时,所以很容易超过 2 秒的运行时间限制。所以我们需要更快的建立这个数组,则观察这个序列,因为所有的数字都是如下形式:
x[i] = (2 ^ k[0]) * (3 ^ k[1]) * (5 ^ k[2]) * (7 ^ k[3]);
这里 k 是一个数组 ( int [ 4 ] ),元素表示 2, 3, 5, 7 这四个因子的幂,因此考虑从 x [ i ] 跳到下一个 x [ i + 1] 时,就是数字的这 4 个因子的幂在发生变化。因此只要知道从 x [ i ] 变化到 x [ i + 1 ] 时,数组 k 如何变化即可。因此我们需要找出前 5842 个 humber number 中的所有规则,这样就可以快速的得到前 5842 个 humber number,组建成我们要查的表。
观察前面几个数字,很容易发现出这些规则,例如:
1->2, 2->3, 3->4, 4->5, 5->6, ...
从 10 到 12 本质上还是应用的 5->6 。因此只有相邻且互质的数字(a, b),才属于我们要找的规则(a -> b),其他的相邻数字都是应用了上述规则中的某一条。
同时这些规则还有优先级的顺序之分,从表面上看,应该是数字 a 和 b 越大,规则越优先。但实际上并非如此,例如:
从 75 到 80 ,应用的实际规则是 15->16 ,而不是 25->27 (这会产生从 75 变成 81,跳过了 80)。因此规则的优先级排序需要按照 a->b 的放大倍数进行从小到大排序。放大倍数(b / a)越小的规则,越优先。考虑到这个规则很多(实际有 76 条),而且涉及的数字很大,所以人工找出所有规则是不现实的。所以我使用一个程序(称之为代码生成器)来专门找出所有的规则,并将其输出成一个函数的代码,函数的名称是 GetNext,含义是根据当前的 humble number ,找出下一个 humble number。如下:
#include <vector> #include <algorithm> #include <iostream> #include <stdio.h> #include <string.h> typedef struct tagNODE { int from; int to; double ratio; //= to / from; } NODE; //x1, x2 是否是已经排好序的。 bool IsSuccessive(NODE x1, NODE x2) { return x1.ratio < x2.ratio; } void Init(std::vector<int> &v1, int nSize) { v1.reserve(nSize); v1.clear(); v1.push_back(1); int nNumber = 2; int tmp; while(v1.size() < nSize) { tmp = nNumber; while((tmp % 2) == 0) tmp /= 2; while((tmp % 3) == 0) tmp /= 3; while((tmp % 5) == 0) tmp /= 5; while((tmp % 7) == 0) tmp /= 7; if(tmp == 1) v1.push_back(nNumber); ++nNumber; } } //x1, x2 是否是互质的(没有公共因子) bool no_comm_factor(int x1, int x2) { if(x1 % 2 == 0 && x2 % 2 == 0) return false; if(x1 % 3 == 0 && x2 % 3 == 0) return false; if(x1 % 5 == 0 && x2 % 5 == 0) return false; if(x1 % 7 == 0 && x2 % 7 == 0) return false; return true; } //give x, find k; //x = 2^k[0] * 3^k[1] * 5^k[2] * 7^k[3]; void GetK(int x, int k[4]) { memset(k, 0, sizeof(int) * 4); while((x & 1) == 0) { x /= 2; k[0]++; } while(x % 3 == 0) { x /= 3; k[1]++; } while(x % 5 == 0) { x /= 5; k[2]++; } while(x % 7 == 0) { x /= 7; k[3]++; } } int main(int argc, char* argv[]) { std::vector<int> v1; //计算出前 5842 个 humber number,这一步需要花比较长的时间。 Init(v1, 5842); //找出所有策略(即找出所有的相邻的互质的 humber number 对)。 std::vector<NODE> nodes; for(int i = 5841; i > 0; --i) { if(no_comm_factor(v1[i - 1], v1[i])) { NODE item; item.from = v1[i - 1]; item.to = v1[i]; item.ratio = item.to * 1.0 / item.from; nodes.push_back(item); } } //按照放大倍数从小到大进行规则排序。 std::sort(nodes.begin(), nodes.end(), IsSuccessive); int iRule = 0; int k1[4], k2[4]; char buf[1024], *pos; FILE *fp = fopen("GetNextK_code.cpp", "w"); fputs("void GetNext(int* k)\n{\n", fp); typename std::vector<NODE>::const_iterator it; for(it = nodes.begin(); it != nodes.end(); ++it) { ++iRule; GetK(it->from, k1); GetK(it->to, k2); if(iRule == 1) strcpy(buf, "\tif("); else if(iRule == nodes.size()) strcpy(buf, "else"); else strcpy(buf, "\telse if("); pos = buf + strlen(buf); if(k1[0]) { sprintf(pos, "k[0] >= %d && ", k1[0]); pos += strlen(pos); } if(k1[1]) { sprintf(pos, "k[1] >= %d && ", k1[1]); pos += strlen(pos); } if(k1[2]) { sprintf(pos, "k[2] >= %d && ", k1[2]); pos += strlen(pos); } if(k1[3]) { sprintf(pos, "k[3] >= %d && ", k1[3]); pos += strlen(pos); } if(iRule == nodes.size()) { //最后一条规则 sprintf(pos, " //(rule %d) %d -> %d (%lf);\n\t{\n", iRule, it->from, it->to, it->ratio); } else { pos -= 4; //remove " && "; sprintf(pos, ") //(rule %d) %d -> %d (%lf);\n\t{\n", iRule, it->from, it->to, it->ratio); } pos += strlen(pos); //From if(k1[0]) { sprintf(pos, "\t\tk[0] -= %d;\n", k1[0]); pos += strlen(pos); } if(k1[1]) { sprintf(pos, "\t\tk[1] -= %d;\n", k1[1]); pos += strlen(pos); } if(k1[2]) { sprintf(pos, "\t\tk[2] -= %d;\n", k1[2]); pos += strlen(pos); } if(k1[3]) { sprintf(pos, "\t\tk[3] -= %d;\n", k1[3]); pos += strlen(pos); } //To if(k2[0]) { sprintf(pos, "\t\tk[0] += %d;\n", k2[0]); pos += strlen(pos); } if(k2[1]) { sprintf(pos, "\t\tk[1] += %d;\n", k2[1]); pos += strlen(pos); } if(k2[2]) { sprintf(pos, "\t\tk[2] += %d;\n", k2[2]); pos += strlen(pos); } if(k2[3]) { sprintf(pos, "\t\tk[3] += %d;\n", k2[3]); pos += strlen(pos); } strcpy(pos, "\t}\n"); fputs(buf, fp); fflush(fp); } fputs("}\n", fp); fclose(fp); return 0; }
使用上面的代码生成器,我们就得到了所有的规则,就可以方便的真正的写用于提交的代码了。
为了从数组 k 计算 humber number 的方便,这里我把 2, 3, 5, 7 的 n 次方提前计算好放到一个数组里,这样就能更快速的计算出 humber number。这样这个题目也就算基本完成了。但是这也只不过是完成了这个题目的一半而已,因此这个题目还有一半大坑在于输出格式中的 “-th” 后缀!为此我 WA 了 2, 3 次以后才把后缀规则写对。简单来说这里需要特别注意的就是:
所有形如 xx11, xx12, xx13 后缀都是 th (而不仅仅是 11, 12, 13 ),除此以为的 xxx1 用 st,xxx2 用 nd,xxx3 用 rd,所有其他都用 th。例如,1011th, 1012th ,1023th,这里需要特别注意。
最终提交代码如下:
// ZOJ1095_HumbleNumbers.cpp // #include <vector> #include <iostream> //选择出下一组 k 值,按照如下规则。 // x = (2^k[0]) * (3^k[1]) * (5^k[2]) * (7^k[3]); void GetNext(int* k); int main(int argc, char* argv[]) { int i, x; int k[4] = { 0, 0, 0, 0 }; int a2[31] = { 1 }; //a2[k] = 2^k; int a3[20] = { 1 }; //a3[k] = 3^k; int a5[14] = { 1 }; //a5[k] = 5^k; int a7[12] = { 1 }; //a7[k] = 7^k; for(i = 1; i < 31; i++) { a2[i] = a2[i - 1] * 2; if(i < 20) a3[i] = a3[i - 1] * 3; if(i < 14) a5[i] = a5[i - 1] * 5; if(i < 12) a7[i] = a7[i - 1] * 7; } std::vector<int> v1; v1.reserve(5842); v1.push_back(1); while(v1.size() < 5842) { GetNext(k); x = a2[k[0]] * a3[k[1]] * a5[k[2]] * a7[k[3]]; v1.push_back(x); } while(true) { std::cin >> i; if(i == 0) break; else if(i % 100 != 11 && i % 10 == 1) std::cout << "The " << i << "st humble number is " << v1[i - 1] << "." << std::endl; else if(i % 100 != 12 && i % 10 == 2) std::cout << "The " << i << "nd humble number is " << v1[i - 1] << "." << std::endl; else if(i % 100 != 13 && i % 10 == 3) std::cout << "The " << i << "rd humble number is " << v1[i - 1] << "." << std::endl; else std::cout << "The " << i << "th humble number is " << v1[i - 1] << "." << std::endl; } return 0; } //以下代码是从另一个程序生成的。 //根据当前的 humble number,选出下一个 humble number。 void GetNext(int* k) { if(k[1] >= 13 && k[3] >= 2) //(rule 1) 78121827 -> 78125000 (1.000041); { k[1] -= 13; k[3] -= 2; k[0] += 3; k[2] += 10; } else if(k[0] >= 4 && k[3] >= 9) //(rule 2) 645657712 -> 645700815 (1.000067); { k[0] -= 4; k[3] -= 9; k[1] += 17; k[2] += 1; } else if(k[0] >= 4 && k[2] >= 6) //(rule 3) 250000 -> 250047 (1.000188); { k[0] -= 4; k[2] -= 6; k[1] += 6; k[3] += 3; } else if(k[0] >= 1 && k[1] >= 7) //(rule 4) 4374 -> 4375 (1.000229); { k[0] -= 1; k[1] -= 7; k[2] += 4; k[3] += 1; } else if(k[0] >= 5 && k[3] >= 8) //(rule 5) 184473632 -> 184528125 (1.000295); { k[0] -= 5; k[3] -= 8; k[1] += 10; k[2] += 5; } else if(k[0] >= 5 && k[1] >= 1 && k[2] >= 2) //(rule 6) 2400 -> 2401 (1.000417); { k[0] -= 5; k[1] -= 1; k[2] -= 2; k[3] += 4; } else if(k[0] >= 9 && k[2] >= 1 && k[3] >= 5) //(rule 7) 43025920 -> 43046721 (1.000483); { k[0] -= 9; k[2] -= 1; k[3] -= 5; k[1] += 16; } else if(k[0] >= 6 && k[3] >= 7) //(rule 8) 52706752 -> 52734375 (1.000524); { k[0] -= 6; k[3] -= 7; k[1] += 3; k[2] += 9; } else if(k[0] >= 10 && k[3] >= 4) //(rule 9) 2458624 -> 2460375 (1.000712); { k[0] -= 10; k[3] -= 4; k[1] += 9; k[2] += 3; } else if(k[0] >= 7 && k[1] >= 4 && k[3] >= 6) //(rule 10) 1219784832 -> 1220703125 (1.000753); { k[0] -= 7; k[1] -= 4; k[3] -= 6; k[2] += 13; } else if(k[0] >= 14 && k[2] >= 3 && k[3] >= 1) //(rule 11) 14336000 -> 14348907 (1.000900); { k[0] -= 14; k[2] -= 3; k[3] -= 1; k[1] += 15; } else if(k[0] >= 11 && k[3] >= 3) //(rule 12) 702464 -> 703125 (1.000941); { k[0] -= 11; k[3] -= 3; k[1] += 2; k[2] += 7; } else if(k[0] >= 15) //(rule 13) 32768 -> 32805 (1.001129); { k[0] -= 15; k[1] += 8; k[2] += 1; } else if(k[0] >= 12 && k[1] >= 5 && k[3] >= 2) //(rule 14) 48771072 -> 48828125 (1.001170); { k[0] -= 12; k[1] -= 5; k[3] -= 2; k[2] += 11; } else if(k[2] >= 8 && k[3] >= 3) //(rule 15) 133984375 -> 134217728 (1.001742); { k[2] -= 8; k[3] -= 3; k[0] += 27; } else if(k[1] >= 7 && k[2] >= 4 && k[3] >= 2) //(rule 16) 66976875 -> 67108864 (1.001971); { k[1] -= 7; k[2] -= 4; k[3] -= 2; k[0] += 26; } else if(k[1] >= 1 && k[2] >= 10) //(rule 17) 29296875 -> 29360128 (1.002159); { k[1] -= 1; k[2] -= 10; k[0] += 22; k[3] += 1; } else if(k[1] >= 14 && k[3] >= 1) //(rule 18) 33480783 -> 33554432 (1.002200); { k[1] -= 14; k[3] -= 1; k[0] += 25; } else if(k[3] >= 10) //(rule 19) 282475249 -> 283115520 (1.002267); { k[3] -= 10; k[0] += 21; k[1] += 3; k[2] += 1; } else if(k[1] >= 8 && k[2] >= 6) //(rule 20) 102515625 -> 102760448 (1.002388); { k[1] -= 8; k[2] -= 6; k[0] += 21; k[3] += 2; } else if(k[1] >= 15 && k[2] >= 2) //(rule 21) 358722675 -> 359661568 (1.002617); { k[1] -= 15; k[2] -= 2; k[0] += 20; k[3] += 3; } else if(k[2] >= 1 && k[3] >= 6) //(rule 22) 588245 -> 589824 (1.002684); { k[2] -= 1; k[3] -= 6; k[0] += 16; k[1] += 2; } else if(k[2] >= 7 && k[3] >= 3) //(rule 23) 26796875 -> 26873856 (1.002873); { k[2] -= 7; k[3] -= 3; k[0] += 12; k[1] += 8; } else if(k[1] >= 5 && k[3] >= 5) //(rule 24) 4084101 -> 4096000 (1.002913); { k[1] -= 5; k[3] -= 5; k[0] += 15; k[2] += 3; } else if(k[2] >= 13) //(rule 25) 1220703125 -> 1224440064 (1.003061); { k[2] -= 13; k[0] += 8; k[1] += 14; } else if(k[2] >= 3 && k[3] >= 2) //(rule 26) 6125 -> 6144 (1.003102); { k[2] -= 3; k[3] -= 2; k[0] += 11; k[1] += 1; } else if(k[1] >= 12 && k[3] >= 4) //(rule 27) 1275989841 -> 1280000000 (1.003143); { k[1] -= 12; k[3] -= 4; k[0] += 14; k[2] += 7; } else if(k[2] >= 9) //(rule 28) 1953125 -> 1959552 (1.003291); { k[2] -= 9; k[0] += 7; k[1] += 7; k[3] += 1; } else if(k[1] >= 6 && k[3] >= 1) //(rule 29) 5103 -> 5120 (1.003331); { k[1] -= 6; k[3] -= 1; k[0] += 10; k[2] += 1; } else if(k[2] >= 5) //(rule 30) 3125 -> 3136 (1.003520); { k[2] -= 5; k[0] += 6; k[3] += 2; } else if(k[1] >= 13) //(rule 31) 1594323 -> 1600000 (1.003561); { k[1] -= 13; k[0] += 9; k[2] += 5; } else if(k[3] >= 9) //(rule 32) 40353607 -> 40500000 (1.003628); { k[3] -= 9; k[0] += 5; k[1] += 4; k[2] += 6; } else if(k[1] >= 7 && k[2] >= 1) //(rule 33) 10935 -> 10976 (1.003749); { k[1] -= 7; k[2] -= 1; k[0] += 5; k[3] += 3; } else if(k[3] >= 6) //(rule 34) 117649 -> 118098 (1.003816); { k[3] -= 6; k[0] += 1; k[1] += 10; } else if(k[3] >= 5) //(rule 35) 16807 -> 16875 (1.004046); { k[3] -= 5; k[1] += 3; k[2] += 4; } else if(k[0] >= 4 && k[2] >= 2 && k[3] >= 2) //(rule 36) 19600 -> 19683 (1.004235); { k[0] -= 4; k[2] -= 2; k[3] -= 2; k[1] += 9; } else if(k[0] >= 1 && k[1] >= 4 && k[3] >= 4) //(rule 37) 388962 -> 390625 (1.004275); { k[0] -= 1; k[1] -= 4; k[3] -= 4; k[2] += 8; } else if(k[0] >= 5 && k[3] >= 1) //(rule 38) 224 -> 225 (1.004464); { k[0] -= 5; k[3] -= 1; k[1] += 2; k[2] += 2; } else if(k[0] >= 9 && k[2] >= 4) //(rule 39) 320000 -> 321489 (1.004653); { k[0] -= 9; k[2] -= 4; k[1] += 8; k[3] += 2; } else if(k[0] >= 6 && k[1] >= 5) //(rule 40) 15552 -> 15625 (1.004694); { k[0] -= 6; k[1] -= 5; k[2] += 6; } else if(k[0] >= 10) //(rule 41) 1024 -> 1029 (1.004883); { k[0] -= 10; k[1] += 1; k[3] += 3; } else if(k[1] >= 5 && k[2] >= 2 && k[3] >= 3) //(rule 42) 2083725 -> 2097152 (1.006444); { k[1] -= 5; k[2] -= 2; k[3] -= 3; k[0] += 21; } else if(k[1] >= 6 && k[2] >= 4) //(rule 43) 455625 -> 458752 (1.006863); { k[1] -= 6; k[2] -= 4; k[0] += 16; k[3] += 1; } else if(k[2] >= 1 && k[3] >= 3) //(rule 44) 1715 -> 1728 (1.007580); { k[2] -= 1; k[3] -= 3; k[0] += 6; k[1] += 3; } else if(k[1] >= 4 && k[3] >= 2) //(rule 45) 3969 -> 4000 (1.007811); { k[1] -= 4; k[3] -= 2; k[0] += 5; k[2] += 3; } else if(k[2] >= 3) //(rule 46) 125 -> 126 (1.008000); { k[2] -= 3; k[0] += 1; k[1] += 2; k[3] += 1; } else if(k[1] >= 5) //(rule 47) 243 -> 245 (1.008230); { k[1] -= 5; k[2] += 1; k[3] += 2; } else if(k[1] >= 3 && k[3] >= 4) //(rule 48) 64827 -> 65536 (1.010937); { k[1] -= 3; k[3] -= 4; k[0] += 16; } else if(k[1] >= 4 && k[2] >= 2) //(rule 49) 2025 -> 2048 (1.011358); { k[1] -= 4; k[2] -= 2; k[0] += 11; } else if(k[3] >= 4) //(rule 50) 2401 -> 2430 (1.012078); { k[3] -= 4; k[0] += 1; k[1] += 5; k[2] += 1; } else if(k[1] >= 2 && k[3] >= 3) //(rule 51) 3087 -> 3125 (1.012310); { k[1] -= 2; k[3] -= 3; k[2] += 5; } else if(k[0] >= 4 && k[2] >= 1) //(rule 52) 80 -> 81 (1.012500); { k[0] -= 4; k[2] -= 1; k[1] += 4; } else if(k[0] >= 5 && k[1] >= 3) //(rule 53) 864 -> 875 (1.012731); { k[0] -= 5; k[1] -= 3; k[2] += 3; k[3] += 1; } else if(k[1] >= 2 && k[3] >= 1) //(rule 54) 63 -> 64 (1.015873); { k[1] -= 2; k[3] -= 1; k[0] += 6; } else if(k[1] >= 3 && k[2] >= 2) //(rule 55) 675 -> 686 (1.016296); { k[1] -= 3; k[2] -= 2; k[0] += 1; k[3] += 3; } else if(k[3] >= 2) //(rule 56) 49 -> 50 (1.020408); { k[3] -= 2; k[0] += 1; k[2] += 2; } else if(k[0] >= 4 && k[1] >= 1) //(rule 57) 48 -> 49 (1.020833); { k[0] -= 4; k[1] -= 1; k[3] += 2; } else if(k[0] >= 9) //(rule 58) 512 -> 525 (1.025391); { k[0] -= 9; k[1] += 1; k[2] += 2; k[3] += 1; } else if(k[2] >= 1 && k[3] >= 1) //(rule 59) 35 -> 36 (1.028571); { k[2] -= 1; k[3] -= 1; k[0] += 2; k[1] += 2; } else if(k[1] >= 3) //(rule 60) 27 -> 28 (1.037037); { k[1] -= 3; k[0] += 2; k[3] += 1; } else if(k[0] >= 3 && k[1] >= 1) //(rule 61) 24 -> 25 (1.041667); { k[0] -= 3; k[1] -= 1; k[2] += 2; } else if(k[0] >= 2 && k[2] >= 1) //(rule 62) 20 -> 21 (1.050000); { k[0] -= 2; k[2] -= 1; k[1] += 1; k[3] += 1; } else if(k[0] >= 7) //(rule 63) 128 -> 135 (1.054688); { k[0] -= 7; k[1] += 3; k[2] += 1; } else if(k[1] >= 1 && k[2] >= 1) //(rule 64) 15 -> 16 (1.066667); { k[1] -= 1; k[2] -= 1; k[0] += 4; } else if(k[0] >= 1 && k[3] >= 1) //(rule 65) 14 -> 15 (1.071429); { k[0] -= 1; k[3] -= 1; k[1] += 1; k[2] += 1; } else if(k[2] >= 2) //(rule 66) 25 -> 27 (1.080000); { k[2] -= 2; k[1] += 3; } else if(k[0] >= 5) //(rule 67) 32 -> 35 (1.093750); { k[0] -= 5; k[2] += 1; k[3] += 1; } else if(k[1] >= 2) //(rule 68) 9 -> 10 (1.111111); { k[1] -= 2; k[0] += 1; k[2] += 1; } else if(k[0] >= 3) //(rule 69) 8 -> 9 (1.125000); { k[0] -= 3; k[1] += 2; } else if(k[3] >= 1) //(rule 70) 7 -> 8 (1.142857); { k[3] -= 1; k[0] += 3; } else if(k[0] >= 1 && k[1] >= 1) //(rule 71) 6 -> 7 (1.166667); { k[0] -= 1; k[1] -= 1; k[3] += 1; } else if(k[2] >= 1) //(rule 72) 5 -> 6 (1.200000); { k[2] -= 1; k[0] += 1; k[1] += 1; } else if(k[0] >= 2) //(rule 73) 4 -> 5 (1.250000); { k[0] -= 2; k[2] += 1; } else if(k[1] >= 1) //(rule 74) 3 -> 4 (1.333333); { k[1] -= 1; k[0] += 2; } else if(k[0] >= 1) //(rule 75) 2 -> 3 (1.500000); { k[0] -= 1; k[1] += 1; } else //(rule 76) 1 -> 2 (2.000000); { k[0] += 1; } }
此外,当然我也想到,代码生成也可以这样,把提前计算好的 5842 个 humble number 依次放入 int 数组,或者一个全局变量数组,应该也是可行的,但这样的代码行数会变更多,显得非常的“暴力”,我没有去尝试这样做。