泊松盘采样(Poisson Disk Sampling)生成均匀随机点

当需要生成随机点且要求随机点自然均匀的分布时,使用泊松盘采样就较为适合。

但该方法与统计学上的概念关联不大,这个只相当于点在面积上服从泊松分布,

而实现这个结果有很多做法。

 

最终效果:

 圆形为含半径的点,圆形的中心代表生成点

 

B站有一个不错的搬运教程(Bridson方法):

https://www.bilibili.com/video/BV1KV411x7LM

 

另外Bridson文章里说蓝噪声(BlueNoise)也基于此方法生成

 

我做了些修改,代码如下:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public static class PoissonDiscSampling
{
    public static List<Vector3> GeneratePoints(float radius, Vector2 sampleRegionSize, int numSamplesBeforeRejection = 32)
    {
        bool IsValid(Vector3 candidate, Vector2 sampleRegionSize, float cellSize, float radius, List<Vector3> points, int[,] grid)
        {
            if (candidate.x - radius >= 0f && candidate.x + radius < sampleRegionSize.x && candidate.z - radius >= 0f && candidate.z + radius < sampleRegionSize.y)
            {
                int cellX = Mathf.RoundToInt(candidate.x / cellSize);
                int cellZ = Mathf.RoundToInt(candidate.z / cellSize);
                int searchStartX = Mathf.Max(0, cellX - 3);
                int searchEndX = Mathf.Min(cellX + 3, grid.GetLength(0) - 1);
                int searchStartZ = Mathf.Max(0, cellZ - 3);
                int searchEndZ = Mathf.Min(cellZ + 3, grid.GetLength(1) - 1);
                //如果要检测其它格子内的球,需要遍历周围6个格子

                for (int x = searchStartX; x <= searchEndX; x++)
                {
                    for (int z = searchStartZ; z <= searchEndZ; z++)
                    {
                        int pointIndex = grid[x, z] - 1;//存长度不存索引,取时减1,0就变成了-1,不需要初始化数组了
                        if (pointIndex != -1)
                        {
                            float dst = (candidate - points[pointIndex]).magnitude;
                            if (dst < radius * 2f)
                            {
                                return false;
                            }
                        }
                    }
                }

                return true;
            }

            return false;
        }

        float cellSize = radius / Mathf.Sqrt(2);

        int[,] grid = new int[Mathf.CeilToInt(sampleRegionSize.x / cellSize), Mathf.CeilToInt(sampleRegionSize.y / cellSize)];
        List<Vector3> points = new List<Vector3>();
        List<Vector3> spawnPoints = new List<Vector3>();

        spawnPoints.Add(new Vector3(sampleRegionSize.x / 2f, 0f, sampleRegionSize.y / 2f));
        while (spawnPoints.Count > 0)
        {
            int spawnIndex = Random.Range(0, spawnPoints.Count);
            Vector3 spawnCenter = spawnPoints[spawnIndex];

            bool candidateAccepted = false;
            for (int i = 0; i < numSamplesBeforeRejection; i++)
            {
                float angle = Random.value * Mathf.PI * 2f;
                Vector3 dir = new Vector3(Mathf.Sin(angle), 0f, Mathf.Cos(angle));
                Vector3 candidate = spawnCenter + dir * Random.Range(2f, 3f) * radius;

                if (IsValid(candidate, sampleRegionSize, cellSize, radius, points, grid))
                {
                    points.Add(candidate);
                    spawnPoints.Add(candidate);
                    grid[Mathf.RoundToInt(candidate.x / cellSize), Mathf.RoundToInt(candidate.z / cellSize)] = points.Count;
                    candidateAccepted = true;
                    break;
                }
            }
            if (!candidateAccepted)
            {
                spawnPoints.RemoveAt(spawnIndex);
            }
        }

        return points;
    }
}

 

 

测试代码如下:

using System.Collections.Generic;
using UnityEngine;

public class Test : MonoBehaviour
{
    public float radius = 0.3f;
    public Vector2 sampleRegionSize = new Vector2(3f, 3f);
    private List<Vector3> mPoints;


    private void OnEnable()
    {
        mPoints = PossonDiscSampling.GeneratePoints(radius, sampleRegionSize);
    }

    private void OnDrawGizmos()
    {
        if (mPoints == null) return;

        float cellSize = radius / Mathf.Sqrt(2);

        Color cacheColor = Gizmos.color;
        Gizmos.color = new Color(0.5f, 0.5f, 0.5f, 0.5f);
        for (float x = 0; x < sampleRegionSize.x; x += cellSize)
        {
            for (float z = 0; z < sampleRegionSize.y; z += cellSize)
                Gizmos.DrawWireCube(new Vector3(x, 0f, z), new Vector3(cellSize, 0f, cellSize));
        }//生成对应采样点的调试方格
        Gizmos.color = cacheColor;

        for (int i = 0; i < mPoints.Count; i++)
        {
            Vector3 vector = mPoints[i];

            Gizmos.DrawWireSphere(vector, radius);

            int x = Mathf.FloorToInt(vector.x / cellSize);
            int z = Mathf.FloorToInt(vector.z / cellSize);

            Gizmos.DrawWireCube(new Vector3(x, 0f, z) * cellSize, new Vector3(cellSize, 0f, cellSize));
            //生成当前点所属方格
        }
    }
}

 

对于该做法还可以做如下应用层面的扩展:

1.扩展到3D空间,一些鸟的移动轨迹可以直接用这个做路点寻路

2.可以尝试在UV上分布,然后映射到3D空间

3.可以基于这个做三角剖分(https://www.cnblogs.com/hont/p/15310157.html)

 

posted @ 2022-06-25 20:31  HONT  阅读(2170)  评论(0编辑  收藏  举报