「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」
题意
边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\).
题解
如果边权为\(1\)很经典,设\(f[k][i]\)表示从\(1\)到\(i\),长度为\(k\)的路径条数,则\(f[k][i] = \sum_{j=1}^n f[k - 1][j] a[j][i]\)。于是可以构造初始矩阵,再乘以\(a^k\)(\(a\)为图的邻接矩阵)。
现在边权不唯一,但是边权很小,可以拆点,一个点拆成\(9\)个点,\(9\)点连成一条链,如果要连出边就从最后一个点连出去,如果连入边就连到相应到点就好。
注意模数比较小,取模可以少一些,会跑的比较快
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 12;
const int M = 92;
const int mo = 2009;
struct matrix {
int a[M][M], n, m;
matrix operator *(const matrix & b) {
matrix ans; ans.n = n; ans.m = b.m;
for(int i = 1; i <= ans.n; i ++) {
for(int j = 1; j <= ans.m; j ++) {
ans.a[i][j] = 0;
for(int k = 1; k <= m; k ++)
ans.a[i][j] += a[i][k] * b.a[k][j];
ans.a[i][j] %= mo;
}
}
return ans;
}
friend matrix mpow(matrix a, int b) {
matrix ans = a; b --;
for(; b >= 1; b >>= 1, a = a * a)
if(b & 1) ans = ans * a;
return ans;
}
} fir, tr;
int n, m, d;
char s[N];
int pos(int x, int y = 8) {
return x + y * n;
}
int main() {
scanf("%d%d", &n, &d);
tr.n = tr.m = m = n * 9;
for(int i = 1; i <= m; i ++)
for(int j = 1; j <= m; j ++)
tr.a[i][j] = 0;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= 8; j ++)
tr.a[pos(i, j - 1)][pos(i, j)] = 1;
scanf("%s", s + 1);
for(int j = 1; j <= n; j ++) {
int w = s[j] ^ '0';
if(w) tr.a[pos(i)][pos(j, 9 - w)] = 1;
}
}
fir.n = 1; fir.m = m;
for(int i = 1; i <= fir.m; i ++)
fir.a[1][i] = i == pos(1) ? 1 : 0;
fir = fir * mpow(tr, d);
printf("%d\n", fir.a[1][pos(n)]);
return 0;
}