【刷题】BZOJ 4176 Lucas的数论
Description
去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。
在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。
求如下表达式的值:
其中 表示ij的约数个数。
他发现答案有点大,只需要输出模1000000007的值。
Input
第一行一个整数n。
Output
一行一个整数ans,表示答案模1000000007的值。
Sample Input
2
Sample Output
8
HINT
对于100%的数据n <= 10^9。
Solution
弱化版在【刷题】BZOJ 3994 [SDOI2015]约数个数和
式子一模一样
把最后的式子用杜教筛求就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000000+10,Mod=1e9+7;
int n,cnt,vis[MAXN],prime[MAXN],mu[MAXN],s[MAXN];
std::map<int,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=(s[i-1]+mu[i])%Mod;
}
inline ll S(int x)
{
if(x<MAXN)return s[x];
if(M.find(x)!=M.end())return M[x];
ll res=0;
for(register int i=2;;)
{
if(i>x)break;
int j=x/(x/i);
(res+=1ll*(j-i+1)*S(x/i)%Mod)%=Mod;
i=j+1;
}
return M[x]=(1-res+Mod)%Mod;
}
inline ll f(int x)
{
ll res=0;
for(register int i=1;;)
{
if(i>x)break;
int j=x/(x/i);
(res+=1ll*(j-i+1)*(x/i)%Mod)%=Mod;
i=j+1;
}
return res;
}
int main()
{
read(n);init();
ll res=0;
for(register int i=1;;)
{
if(i>n)break;
int j=n/(n/i);
ll now=f(n/i);
(res+=1ll*(S(j)-S(i-1)+Mod)%Mod*now%Mod*now%Mod)%=Mod;
i=j+1;
}
write(res,'\n');
return 0;
}