【刷题】BZOJ 2134 单选错位
Description
Input
n很大,为了避免读入耗时太多,
输入文件只有5个整数参数n, A, B, C, a1,
由上交的程序产生数列a。
下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):
// for pascal
readln(n,A,B,C,q[1]);
for i:=2 to n do q[i] := (int64(q[i-1]) * A + B) mod 100000001;
for i:=1 to n do q[i] := q[i] mod C + 1;
// for C/C++
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++) a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++) a[i] = a[i] % C + 1;
选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),
n和a的含义见题目描述。
2≤n≤10000000, 0≤A,B,C,a1≤100000000
Output
输出一个实数,表示gx期望做对的题目个数,保留三位小数。
Sample Input
3 2 0 4 1
Sample Output
1.167
【样例说明】
a[] = {2,3,1}
正确答案 gx的答案 做对题目 出现概率
{1,1,1} {1,1,1} 3 1/6
{1,2,1} {1,1,2} 1 1/6
{1,3,1} {1,1,3} 1 1/6
{2,1,1} {1,2,1} 1 1/6
{2,2,1} {1,2,2} 1 1/6
{2,3,1} {1,2,3} 0 1/6
共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)
Solution
单独考虑每道题的贡献,第 \(i\) 题与第 \(i-1\) 题正确答案相同的期望为
线性扫过去积累贡献就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int Mod=1e8+1;
int n,A,B,C,st,pre,now;
db ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(A);read(B);read(C);read(st);pre=st;
for(register int i=2;i<=n;++i)now=(1ll*pre*A+B)%Mod,ans+=1.0/(db)(max(pre%C,now%C)+1),pre=now;
ans+=1.0/(db)(max(st%C,now%C)+1);
printf("%.3f\n",ans);
return 0;
}