【刷题】LOJ 6226 「网络流 24 题」骑士共存问题
题目描述
在一个 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入。
对于给定的 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击。
输入格式
第一行有两个正整数 \(\text{n}\) 和 \(\text{m}\) \(( 1 \leq n \leq 200, 0 \leq m \leq n^2 - 1 )\) 分别表示棋盘的大小和障碍数。
输出格式
输出计算出的共存骑士数。
样例
样例输入
3 2
1 1
3 3
样例输出
5
数据范围与提示
\(1\leq n\leq 200\)
\(0 \leq m \leq n^2-1\)
题解
一个点与它能攻击到的点连边
变成了一个二分图
那么题目要求的就是二分图最大独立集
最大独立集 \(=\) 点数 \(-\) 最大流
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,inf=0x3f3f3f3f;
int n,m,tot,e=1,col[MAXN][MAXN],dr[8][2]={{-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}},s,t,to[MAXN*MAXN<<4],nex[MAXN*MAXN<<4],beg[MAXN*MAXN],cap[MAXN*MAXN<<4],cur[MAXN*MAXN],vis[MAXN*MAXN],level[MAXN*MAXN],clk;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
return (x-1)*n+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(!level[to[i]]&&cap[i])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);tot=n*n;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if((i+j)&1)col[i][j]=1;
else col[i][j]=2;
for(register int i=1,x,y;i<=m;++i)read(x),read(y),col[x][y]=0,tot--;
s=n*n+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if(!col[i][j])continue;
else if(col[i][j]==2)
{
insert(s,id(i,j),1);
for(register int k=0;k<8;++k)
{
int dx=i+dr[k][0],dy=j+dr[k][1];
if(dx<0||dx>n||dy<0|dy>n||col[dx][dy]!=1)continue;
insert(id(i,j),id(dx,dy),1);
}
}
else insert(id(i,j),t,1);
write(tot-Dinic(),'\n');
return 0;
}