【刷题】BZOJ 1070 [SCOI2007]修车

Description

  同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

Input

  第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。

Output

  最小平均等待时间,答案精确到小数点后2位。

Sample Input

2 2
3 2
1 4

Sample Output

1.50

HINT

数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)

Solution

把每个维修人员拆成 \(n\) 个点,每个点向所有车连边,第 \(i\) 个人的第 \(j\) 个点连向车 \(k\) ,代表第 \(i\) 位维修人员修第 \(k\) 辆车是在维修顺序的倒数第 \(j\) 位,所以这样的边的费用是 \(j \times\)当前耗时,因为后面有 \(j\) 个人在等,这次维修的贡献就是当前耗时乘等待人数
跑费用流即可

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=600+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,e=1,clk,s,t,answas,beg[MAXN],cur[MAXN],vis[MAXN],level[MAXN],p[MAXN],to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],was[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
	return (x-1)*n+y;
}
inline void insert(int x,int y,int z,int k)
{
	to[++e]=y;
	nex[e]=beg[x];
	beg[x]=e;
	cap[e]=z;
	was[e]=k;
	to[++e]=x;
	nex[e]=beg[y];
	beg[y]=e;
	cap[e]=0;
	was[e]=-k;
}
inline bool bfs()
{
	memset(level,inf,sizeof(level));
	level[s]=0;
	p[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		p[x]=0;
		for(register int i=beg[x];i;i=nex[i])
			if(cap[i]&&level[to[i]]>level[x]+was[i])
			{
				level[to[i]]=level[x]+was[i];
				if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
			}
	}
	return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
	if(x==t||!maxflow)return maxflow;
	vis[x]=clk;
	int res=0;
	for(register int &i=cur[x];i;i=nex[i])
		if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
		{
			int f=dfs(to[i],min(cap[i],maxflow));
			res+=f;
			cap[i]-=f;
			cap[i^1]+=f;
			answas+=f*was[i];
			maxflow-=f;
			if(!maxflow)break;
		}
	return res;
}
inline void MCMF()
{
	while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
	read(m);read(n);
	s=m*n+n+1,t=s+1;
	for(register int i=1;i<=m;++i)
		for(register int j=1;j<=n;++j)insert(s,id(i,j),1,0);
	for(register int i=1;i<=n;++i)
		for(register int j=1;j<=m;++j)
		{
			int x;read(x);
			for(register int k=1;k<=n;++k)insert(id(j,k),n*m+i,1,x*k);
		}
	for(register int i=1;i<=n;++i)insert(n*m+i,t,1,0);
	MCMF();
	printf("%.2f\n",(db)answas/n);
	return 0;
}
posted @ 2018-08-04 08:52  HYJ_cnyali  阅读(120)  评论(0编辑  收藏  举报