【刷题】BZOJ 1001 [BeiJing2006]狼抓兔子

Description

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路

1:(x,y)<==>(x+1,y)

2:(x,y)<==>(x,y+1)

3:(x,y)<==>(x+1,y+1)

道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.

Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.

接下来分三部分

第一部分共N行,每行M-1个数,表示横向道路的权值.

第二部分共N-1行,每行M个数,表示纵向道路的权值.

第三部分共N-1行,每行M-1个数,表示斜向道路的权值.

输入文件保证不超过10M

Output

输出一个整数,表示参与伏击的狼的最小数量.

Sample Input

3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6

Sample Output

14

Solution

一个图的最小割
直接写了个Dinic就过了
还有一种更好的做法,平面图的最小割等于其对偶图的最短路
把对偶图建出来跑最短路更稳一些
但是既然Dinic可以过,当然就懒得写了,还是跑网络流吧

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,inf=0x3f3f3f3f;
int n,m,e=1,to[MAXN*MAXN*6],nex[MAXN*MAXN*6],beg[MAXN*MAXN],cap[MAXN*MAXN*6],clk,vis[MAXN*MAXN],cur[MAXN*MAXN],s,t,level[MAXN*MAXN];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
	return (x-1)*m+y;
}
inline void insert(int x,int y,int z)
{
	to[++e]=y;
	nex[e]=beg[x];
	beg[x]=e;
	cap[e]=z;
	to[++e]=x;
	nex[e]=beg[y];
	beg[y]=e;
	cap[e]=z;
}
inline bool bfs()
{
	memset(level,0,sizeof(level));
	level[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		for(register int i=beg[x];i;i=nex[i])
			if(cap[i]&&!level[to[i]])
			{
				level[to[i]]=level[x]+1;
				q.push(to[i]);
			}
	}
	return level[t];
}
inline int dfs(int x,int maxflow)
{
	if(x==t||!maxflow)return maxflow;
	int res=0;
	vis[x]=clk;
	for(register int &i=cur[x];i;i=nex[i])
		if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+1)
		{
			int f=dfs(to[i],min(maxflow,cap[i]));
			maxflow-=f;
			res+=f;
			cap[i]-=f;
			cap[i^1]+=f;
			if(!maxflow)break;
		}
	vis[x]=0;
	return res;
}
inline int Dinic()
{
	int res=0;
	while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
	return res;
}
int main()
{
	read(n);read(m);
	for(register int i=1;i<=n;++i)
		for(register int j=1;j<m;++j)
		{
			int x;read(x);
			insert(id(i,j),id(i,j+1),x);
		}
	for(register int i=1;i<n;++i)
		for(register int j=1;j<=m;++j)
		{
			int x;read(x);
			insert(id(i,j),id(i+1,j),x);
		}
	for(register int i=1;i<n;++i)
		for(register int j=1;j<m;++j)
		{
			int x;read(x);
			insert(id(i,j),id(i+1,j+1),x);
		}
	s=id(1,1),t=id(n,m);
	write(Dinic(),'\n');
	return 0;
}
posted @ 2018-06-13 20:53  HYJ_cnyali  阅读(146)  评论(0编辑  收藏  举报