【刷题】UOJ #34 多项式乘法

这是一道模板题。

给你两个多项式,请输出乘起来后的多项式。

输入格式

第一行两个整数 \(n\)\(m\) ,分别表示两个多项式的次数。

第二行 \(n+1\) 个整数,表示第一个多项式的 \(0\)\(n\) 次项系数。

第三行 \(m+1\) 个整数,表示第二个多项式的 \(0\)\(m\) 次项系数。

输出格式

一行 \(n+m+1\) 个整数,表示乘起来后的多项式的 \(0\)\(n+m\) 次项系数。

样例一

input

1 2

1 2

1 2 1

output

1 4 5 2

explanation

\((1 + 2x) \cdot (1 + 2x + x^2) = 1 + 4x + 5x^2 + 2x^3\)

限制与约定

\(0 \leq n, m \leq 10^5\),保证输入中的系数大于等于 \(0\) 且小于等于 \(9\)

时间限制:1s

空间限制:256MB

题解

迟来的FFT,用的迭代版,更快一些

Menci的博客写得很好

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<21;
const db Pi=acos(-1.0);
int n1,n2,n,m,rev[MAXN],cnt;
struct Complex{
	db real,imag;
	inline Complex operator + (const Complex &A){
		return (Complex){real+A.real,imag+A.imag};
	};
	inline Complex operator - (const Complex &A){
		return (Complex){real-A.real,imag-A.imag};
	};
	inline Complex operator * (const Complex &A){
		return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
	};
};
Complex a[MAXN],b[MAXN];
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
	for(register int i=0;i<n;++i)
		if(i<rev[i])std::swap(A[i],A[rev[i]]);
	for(register int l=2;l<=n;l<<=1)
	{
		Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
		for(register int i=0;i<n;i+=l)
		{
			Complex w=(Complex){1,0};
			for(register int j=0;j<(l>>1);++j)
			{
				Complex A1=A[i+j],A2=A[i+j+(l>>1)]*w;
				A[i+j]=A1+A2;A[i+j+(l>>1)]=A1-A2;
				w=w*wn;
			}
		}
	}
}
int main()
{
	read(n1);read(n2);
	n1++;n2++;m=n1+n2-1;
	for(register int i=0;i<n1;++i)scanf("%lf",&a[i].real);
	for(register int i=0;i<n2;++i)scanf("%lf",&b[i].real);
	for(n=1;n<m;n<<=1)++cnt;
	for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
	FFT(a,1);FFT(b,1);
	for(register int i=0;i<=n;++i)a[i]=a[i]*b[i];
	FFT(a,-1);
	for(register int i=0;i<m;++i)write((int)(a[i].real/n+0.5),' ');
	puts("");
	return 0;
}
posted @ 2018-06-11 17:09  HYJ_cnyali  阅读(227)  评论(0编辑  收藏  举报