【刷题】BZOJ 3998 [TJOI2015]弦论
Description
对于一个给定长度为N的字符串,求它的第K小子串是什么。
Input
第一行是一个仅由小写英文字母构成的字符串S
第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。K的意义如题所述。
Output
输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1
Sample Input
aabc
0 3
Sample Output
aab
HINT
N<=5*10^5
T<2
K<=10^9
Solution
建SAM
首先对于不能重复的,那么SAM里每个节点的 \(size\) ,即出现次数,直接赋为 \(1\) 即可,然后类似与平衡树找第 \(k\) 大在SAM里面dfs就好了
对于可重复的,那么一个节点的出现次数就是parent树中的子树的和,其余跟上面一模一样
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=500000+10;
int n,len[MAXN<<1],fa[MAXN<<1],ch[MAXN<<1][30],cnt[MAXN],rk[MAXN<<1],las=1,tot=1,size[MAXN<<1],sum[MAXN<<1],opt,k;
char s[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void extend(int c)
{
int p=las,np=++tot;
las=np;
len[np]=len[p]+1;size[np]=1;
while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
if(!p)fa[np]=1;
else
{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[np]=q;
else
{
int nq=++tot;
fa[nq]=fa[q];
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
len[nq]=len[p]+1,fa[q]=fa[np]=nq;
while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
}
}
}
inline void dfs(int x,int k)
{
k-=size[x];
if(k<=0)return ;
for(register int i=1;i<=26;++i)
if(ch[x][i])
{
if(sum[ch[x][i]]>=k)
{
putchar(i+'a'-1);
dfs(ch[x][i],k);
return ;
}
else k-=sum[ch[x][i]];
}
}
int main()
{
scanf("%s",s+1);
read(opt);read(k);
n=strlen(s+1);
for(register int i=1;i<=n;++i)extend(s[i]-'a'+1);
for(register int i=1;i<=tot;++i)cnt[len[i]]++;
for(register int i=1;i<=n;++i)cnt[i]+=cnt[i-1];
for(register int i=1;i<=tot;++i)rk[cnt[len[i]]--]=i;
if(opt)
for(register int i=tot;i>=1;--i)size[fa[rk[i]]]+=size[rk[i]];
else
for(register int i=1;i<=tot;++i)size[i]=1;
size[1]=0;
for(register int i=tot;i>=1;--i)
{
sum[rk[i]]=size[rk[i]];
for(register int j=1;j<=26;++j)sum[rk[i]]+=sum[ch[rk[i]][j]];
}
if(k>sum[1])puts("-1");
else dfs(1,k);
return 0;
}