【刷题】洛谷 P3807 【模板】卢卡斯定理

题目背景

这是一道模板题。

题目描述

给定\(n,m,p( 1\le n,m,p\le 10^5)\)

\(C_{n+m}^{m}\ mod\ p\)

保证 \(p\) 为prime

\(C\) 表示组合数。

一个测试点内包含多组数据。

输入输出格式

输入格式:

第一行一个整数 \(T( T\le 10 )\),表示数据组数

第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上

输出格式:

共T行,每行一个整数表示答案。

输入输出样例

输入样例#1:

2
1 2 5
2 1 5

输出样例#1:

3
3

题解

卢卡斯定理的模板题

\[\bigg(\begin{matrix} m \\ n \end{matrix}\bigg) \mod p=\bigg(\begin{matrix} m/p \\ n/p \end{matrix}\bigg)\bigg(\begin{matrix} m\mod p \\ n~\mod p \end{matrix}\bigg) \mod p \]

具体应用就是预处理模数的fac和inv,然后两个组合数中后面那个肯定可以用预处理的算,前面那个如果 \(n\)\(m\) 还是比模数大,就一直递归下去。注意,当 \(n\) 小于 \(m\) 时,返回0
证明看这里
那这道题就裸啦

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXP=100000+10;
ll fac[MAXP],inv[MAXP];
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b,int n)
{
	ll res=1;
	while(b)
	{
		if(b&1)res=res*a%n;
		a=a*a%n;
		b>>=1;
	}
	return res;
}
inline void init(int p)
{
	fac[0]=1;
	for(register int i=1;i<p;++i)fac[i]=1ll*fac[i-1]*i%p;
	inv[p-1]=qexp(fac[p-1],p-2,p);
	for(register int i=p-2;i>=0;--i)inv[i]=1ll*inv[i+1]*(i+1)%p;
}
inline ll C(ll n,ll m,int p)
{
	if(n<m)return 0;
	if(n<p&&m<p)return fac[n]*inv[m]%p*inv[n-m]%p;
	else return C(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main()
{
	int T;
	read(T);
	while(T--)
	{
		int n,m,p;
		read(n);read(m);read(p);
		init(p);
		write(C(n+m,m,p),'\n');
	}
	return 0;
}
posted @ 2018-04-30 17:25  HYJ_cnyali  阅读(264)  评论(0编辑  收藏  举报