【刷题】BZOJ 1453 [Wc]Dface双面棋盘

Description

Input

Output

Sample Input

Sample Output

HINT

Solution

不强制在线的动态图问题,那就LCT了
类似二分图那道题目
对于四个方向,颜色相同的连边;那么每次翻转就变成了几次删边和几次加边(注意加边在删边之后);联通块数量就变成了LCT维护的森林的数量
先把所有动态的边存下来(离线),然后找到他们被删掉的时间,以时间为权值用LCT维护最大生成树,然后就保证了不会出现非树边代替树边的情况,所以只要删掉了一条树边,就一定会把一棵树变成两棵树;而对于连边,如果这条边的两端还没联通,那这条边就一定会把两棵树变成一棵树
这题初始化比较麻烦,LCT倒是很正常(我数组不知道要开多大,试了几个数,最后变成了程序里的那样,不会RE,也不会MLE)

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=300+10,MAXM=30000+10,MAXS=MAXN*MAXN,inf=0x3f3f3f3f;
int n,m,color[MAXN][MAXN],ans[2],dr[4][2]={{1,0},{-1,0},{0,1},{0,-1}},cnt,tmp[MAXN][MAXN],in[MAXS];
struct edge{
	int u,v;
};
edge side[MAXS+MAXM];
struct data{
	int id,opt,val,t,c;
	inline bool operator < (const data &A) const {
		return side[id].u<side[A.id].u||side[id].u==side[A.id].u&&side[id].v<side[A.id].v;
	};
	inline bool operator > (const data &A) const {
		return t<A.t||t==A.t&&opt<A.opt;
	};
};
data p[MAXS+MAXM<<1];
struct question{
	int x,y;
};
question query[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
	int ch[MAXS+MAXM][2],fa[MAXS+MAXM],id[MAXS+MAXM],Mn[MAXS+MAXM],rev[MAXS+MAXM],stack[MAXS+MAXM],cnt,val[MAXS+MAXM];
	inline void init()
	{
		memset(Mn,inf,sizeof(Mn));
		memset(val,inf,sizeof(val));
	}
	inline bool nroot(int x)
	{
		return lc(fa[x])==x||rc(fa[x])==x;
	}
	inline void reverse(int x)
	{
		std::swap(lc(x),rc(x));
		rev[x]^=1;
	}
	inline void pushup(int x)
	{
		Mn[x]=val[x],id[x]=x;
		if(Mn[lc(x)]<Mn[x])Mn[x]=Mn[lc(x)],id[x]=id[lc(x)];
		if(Mn[rc(x)]<Mn[x])Mn[x]=Mn[rc(x)],id[x]=id[rc(x)];
	}
	inline void pushdown(int x)
	{
		if(rev[x])
		{
			if(lc(x))reverse(lc(x));
			if(rc(x))reverse(rc(x));
			rev[x]=0;
		}
	}
	inline void rotate(int x)
	{
		int f=fa[x],p=fa[f],c=(rc(f)==x);
		if(nroot(f))ch[p][rc(p)==f]=x;
		fa[ch[f][c]=ch[x][c^1]]=f;
		fa[ch[x][c^1]=f]=x;
		fa[x]=p;
		pushup(f);
		pushup(x);
	}
	inline void splay(int x)
	{
		cnt=0;
		stack[++cnt]=x;
		for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
		while(cnt)pushdown(stack[cnt--]);
		for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
			if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
		pushup(x);
	}
	inline void access(int x)
	{
		for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
	}
	inline int findroot(int x)
	{
		access(x);splay(x);
		while(lc(x))pushdown(x),x=lc(x);
		splay(x);
		return x;
	}
	inline void makeroot(int x)
	{
		access(x);splay(x);reverse(x);
	}
	inline void split(int x,int y)
	{
		makeroot(x);access(y);splay(y);
	}
	inline void link(int x,int y)
	{
		makeroot(x);fa[x]=y;
	}
	inline void cut(int x,int y)
	{
		split(x,y);fa[x]=lc(y)=0;pushup(y);
	}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(c!='\0')putchar(c);
}
inline bool cmp(data a,data b)
{
	return a>b;
}
struct chess{
	std::map<data,int> M;
	std::map<int,int> Mp[MAXS];
	inline int id(int x,int y)
	{
		return (x-1)*n+y;
	}
	inline void init()
	{
		int snt=0;
		for(register int i=1;i<=n;++i)
			for(register int j=1;j<=n;++j)
			{
				if(j!=n)side[++snt].u=id(i,j),side[snt].v=id(i,j+1),Mp[side[snt].u][side[snt].v]=snt;
				if(i!=n)side[++snt].u=id(i,j),side[snt].v=id(i+1,j),Mp[side[snt].u][side[snt].v]=snt;
			}
		for(register int i=1;i<=n;++i)
			for(register int j=1;j<=n;++j)
			{
				if(j!=n&&color[i][j]==color[i][j+1])p[++cnt].id=Mp[id(i,j)][id(i,j+1)],p[cnt].t=0,p[cnt].opt=1,p[cnt].c=color[i][j];
				if(i!=n&&color[i][j]==color[i+1][j])p[++cnt].id=Mp[id(i,j)][id(i+1,j)],p[cnt].t=0,p[cnt].opt=1,p[cnt].c=color[i][j];
			}
		read(m);
		for(register int i=1;i<=m;++i)
		{
			int x,y;
			read(x);read(y);
			query[i].x=x;query[i].y=y;
			for(register int k=0;k<4;++k)
			{
				int dx=x+dr[k][0],dy=y+dr[k][1],u=id(x,y),v=id(dx,dy);
				if(dx<1||dy<1||dx>n||dy>n)continue;
				if(u>v)std::swap(u,v);
				if(tmp[x][y]==tmp[dx][dy])p[++cnt].id=Mp[u][v],p[cnt].t=i,p[cnt].opt=-1;
				else p[++cnt].id=Mp[u][v],p[cnt].t=i,p[cnt].opt=1;
			}
			tmp[x][y]^=1;
		}
		std::stable_sort(p+1,p+cnt+1,cmp);
		for(register int i=1;i<=cnt;++i)p[i].val=m+1;
		for(register int i=cnt;i>=1;--i)
		{
			if(M[p[i]])p[i].val=M[p[i]];
			M[p[i]]=p[i].t;
		}
	}
	inline void add(int now,int col)
	{
		int u=side[p[now].id].u,v=side[p[now].id].v,sn=p[now].id+n*n;
		if(T.findroot(u)!=T.findroot(v))
		{
			ans[col]--;
			T.access(sn);T.splay(sn);
			T.val[sn]=p[now].val;
			T.link(sn,u);T.link(sn,v);
			in[sn-n*n]=1;
		}
		else
		{
			T.split(u,v);
			if(p[now].val>T.Mn[v])
			{
				int so=T.id[v];
				T.cut(so,side[so-n*n].u);T.cut(so,side[so-n*n].v);
				T.val[sn]=p[now].val;
				T.link(sn,u);T.link(sn,v);
				in[so-n*n]=0;in[sn-n*n]=1;
			}
		}
	}
	inline void del(int now,int col)
	{
		if(!in[p[now].id])return ;
		int u=side[p[now].id].u,v=side[p[now].id].v,sn=p[now].id+n*n;
		T.cut(sn,u);T.cut(sn,v);
		in[sn-n*n]=0;
		ans[col]++;
	}
};
chess G;
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
	read(n);
	for(register int i=1;i<=n;++i)
		for(register int j=1;j<=n;++j)
		{
			read(color[i][j]),ans[color[i][j]]++;
			tmp[i][j]=color[i][j];
		}
	G.init();
	T.init();
	int j=1;
	for(;j<=cnt&&p[j].t==0;++j)G.add(j,p[j].c);
	for(register int i=1;i<=m;++i)
	{
		int x=query[i].x,y=query[i].y,pcol=color[x][y];
		for(;j<=cnt&&p[j].t<=i;++j)
			if(p[j].opt==-1)G.del(j,pcol);
			else G.add(j,pcol^1);
		ans[pcol]--;ans[pcol^1]++;
		color[x][y]^=1;
		write(ans[1],' ');write(ans[0],'\n');
	}
	return 0;
}
posted @ 2018-04-09 11:14  HYJ_cnyali  阅读(222)  评论(0编辑  收藏  举报