【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)

题目背景

动态树

题目描述

给定n个点以及每个点的权值,要你处理接下来的m个操作。操作有4种。操作从0到3编号。点从1到n编号。

0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。

1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接。

2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。

3:后接两个整数(x,y),代表将点x上的权值变成y。

输入输出格式

输入格式:

第1行两个整数,分别为n和m,代表点数和操作数。

第2行到第n+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。

第n+2行到第n+m+1行,每行三个整数,分别代表操作类型和操作所需的量。

输出格式:

对于每一个0号操作,你须输出x到y的路径上点权的xor和。

输入输出样例

输入样例#1:

3 3
1
2
3
1 1 2
0 1 2
0 1 1

输出样例#1:

3
1

说明

数据范围: \(1 \leq N, M \leq 3 \cdot {10}^5\)

题解

看了那么久的博客, 终于开始打LCT了,只不过现在还没有完全懂啊,模板几乎照抄,这种东西就背去吧
既然是模板题,就没什么好说的了,LCT维护就是链上的异或和,其它的就完全是基本操作
(如果你不知道LCT是什么或者没有学过/想学LCT,推荐一处 LCT总结+题单+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
#define lc(x) ch[x][0]
#define rc(x) ch[x][1]
const int MAXN=300000+10;
int n,m,A[MAXN];
struct LCT{
	int fa[MAXN],ch[MAXN][2],sum[MAXN],rev[MAXN];
	inline void init()
	{
		memset(fa,0,sizeof(fa));
		memset(ch,0,sizeof(ch));
		memset(sum,0,sizeof(sum));
		memset(rev,0,sizeof(rev));
	}
	inline bool nroot(int x)
	{
		return lc(fa[x])==x||rc(fa[x])==x;
	}
	inline void reverse(int x)
	{
		std::swap(lc(x),rc(x));
		rev[x]^=1;
	}
	inline void pushup(int x)
	{
		sum[x]=sum[lc(x)]^sum[rc(x)]^A[x];
	}
	inline void pushdown(int x)
	{
		if(rev[x])
		{
			if(lc(x))reverse(lc(x));
			if(rc(x))reverse(rc(x));
			rev[x]=0;
		}
	}
	inline void rotate(int x)
	{
	    int f=fa[x],p=fa[f],c=(rc(f)==x);
	    if(nroot(f))ch[p][ch[p][1]==f]=x;
	    fa[ch[f][c]=ch[x][c^1]]=f;
		fa[ch[x][c^1]=f]=x;
		fa[x]=p;
	    pushup(f);
		pushup(x);
	}
	inline void splay(int x)
	{
		std::stack<int> s;
		s.push(x);
		for(register int i=x;nroot(i);i=fa[i])s.push(fa[i]);
		while(!s.empty())pushdown(s.top()),s.pop();
		for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
			if(nroot(y))rotate((x==lc(y))==(y==lc(fa[y]))?y:x);
		pushup(x);
	}
	inline void access(int x)
	{
		for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
	}
	inline void makeroot(int x)
	{
		access(x);splay(x);reverse(x);
	}
	inline int findroot(int x)
	{
		access(x);splay(x);
		while(lc(x))pushdown(x),x=lc(x);
		return x;
	}
	inline void split(int x,int y)
	{
		makeroot(x);access(y);splay(y);
	}
	inline void link(int x,int y)
	{
		makeroot(x);
		if(findroot(y)!=x)fa[x]=y;
	}
	inline void cut(int x,int y)
	{
		makeroot(x);
		if(findroot(y)==x&&fa[x]==y&&!rc(x))fa[x]=lc(y)=0,pushup(y);
	}
};
LCT T;
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
	read(n);read(m);
	for(register int i=1;i<=n;++i)read(A[i]);
	T.init();
	while(m--)
	{
		int opt,x,y;
		read(opt);read(x);read(y);
		if(opt==0)T.split(x,y),write(T.sum[y],'\n');
		if(opt==1)T.link(x,y);
		if(opt==2)T.cut(x,y);
		if(opt==3)T.splay(x),A[x]=y;
	}
	return 0;
}
posted @ 2018-03-31 09:58  HYJ_cnyali  阅读(227)  评论(0编辑  收藏  举报