【刷题】BZOJ 3994 [SDOI2015]约数个数和

Description

设d(x)为x的约数个数,给定N、M,求 enter image description here

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2
7 4
5 6

Sample Output

110
121

HINT

1<=N, M<=50000
1<=T<=50000

Solution

莫比乌斯反演
但这题更多的是套路
首先,一个神奇的东东:\(d(nm)= \sum_{i|n}\sum_{j|m}[gcd(i,j)=1]\)
这个东西是个套路,证明的话可以百度,用的确实多
然后就开始推式子

\[\sum_{i=1}^N\sum_{j=1}^Md(ij)=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[gcd(k,l)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}\sum_{d|gcd(k,l)}\mu(d)\ \ \ \ (\sum_{d|n}\mu(d)=[n=1]) \]

\[=\sum_{i=1}^N\sum_{j=1}^M\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{i=1}^N\sum_{j=1}^M\sum_{k|i}\sum_{l|j}[d|gcd(k,l)]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^N\sum_{l=1}^M[d|gcd(k,l)]\lfloor \frac{N}{k} \rfloor \lfloor \frac{M}{l} \rfloor\ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{dk=1}^N\sum_{dl=1}^M[d|gcd(dk,dl)]\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor \lfloor \frac{M}{dl} \rfloor\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)(\sum_{k=1}^{\lfloor \frac{N}{d} \rfloor}\lfloor \frac{N}{dk} \rfloor)(\sum_{l=1}^{\lfloor \frac{M}{d} \rfloor} \lfloor \frac{M}{dl} \rfloor)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]

\[=\sum_{d=1}^{min(N,M)}\mu(d)\ f(\lfloor \frac{N}{d} \rfloor)\ f(\lfloor \frac{M}{d} \rfloor)\ \ \ \ (f(i)=\sum_{j=1}^i\lfloor \frac{i}{j} \rfloor)\ \ \]

于是\(\mu\)用线性筛加前缀和,\(f\)整除分块预处理
最后求式子再用整除分块

#include<bits/stdc++.h>
#define ll long long
const int MAXN=50000+10;
int T,cnt,prime[MAXN],mu[MAXN],s[MAXN],f[MAXN];
bool vis[MAXN];
template<typename T> inline void read(T &x)
{
	T data=0,w=1;
	char ch=0;
	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
	if(ch=='-')w=-1,ch=getchar();
	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
	x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
	if(x<0)putchar('-'),x=-x;
	if(x>9)write(x/10);
	putchar(x%10+'0');
	if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
	memset(vis,1,sizeof(vis));
	vis[0]=vis[1]=0;
	mu[1]=1;
	for(register int i=2;i<MAXN;++i)
	{
		if(vis[i])
		{
			prime[++cnt]=i;
			mu[i]=-1;
		}
		for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
		{
			vis[i*prime[j]]=0;
			if(i%prime[j])mu[i*prime[j]]=-mu[i];
			else break;
		}
	}
	for(register int i=1;i<MAXN;++i)s[i]=s[i-1]+mu[i];
	for(register int k=1;k<MAXN;++k)
		for(register int i=1;;)
		{
			if(i>k)break;
			int j=k/(k/i);
			f[k]+=(k/i)*(j-i+1);
			i=j+1;
		}
}
inline ll solve(int N,int M)
{
	ll res=0;
	for(register int i=1;;)
	{
		if(i>min(N,M))break;
		int j=min(N/(N/i),M/(M/i));
		res+=(ll)f[N/i]*(ll)f[M/i]*(ll)(s[j]-s[i-1]);
		i=j+1;
	}
	return res;
}
int main()
{
	read(T);
	init();
	while(T--)
	{
		int N,M;
		read(N);read(M);
		write(solve(N,M),'\n');
	}
	return 0;
}

posted @ 2018-03-09 22:08  HYJ_cnyali  阅读(285)  评论(0编辑  收藏  举报