[转载]贝塞尔曲线
-
效果图
效果图中我们实现了一个简单的随手指滑动的二阶贝塞尔曲线,还有一个复杂点的,穿越所有已知点的贝塞尔曲线。学会使用贝塞尔曲线后可以实现例如QQ红点滑动删除啦,360动态球啦,bulabulabula~
什么是贝塞尔曲线?
贝赛尔曲线(Bézier曲线)是电脑图形学中相当重要的参数曲线。更高维度的广泛化贝塞尔曲线就称作贝塞尔曲面,其中贝塞尔三角是一种特殊的实例。贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由Paul de Casteljau于1959年运用de Casteljau算法开发,以稳定数值的方法求出贝塞尔曲线。
读完上述贝塞尔曲线简介我还是一头雾水,来个示例呗。
示例
线性贝塞尔曲线
给定点P0、P1,线性贝塞尔曲线只是一条两点之间的直线。这条线由下式给出:
二次方贝塞尔曲线
二次方贝塞尔曲线的路径由给定点P0、P1、P2的函数B(t)追踪:
三次方贝塞尔曲线
P0、P1、P2、P3四个点在平面或在三维空间中定义了三次方贝塞尔曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1或P2;公式如下:
N次方贝塞尔曲线
身为三维生物超出三维我很方,这里只给示例图。想具体了解的同学请左转度娘。
就当没看过上面
Android在API=1的时候就提供了贝塞尔曲线的画法,只是隐藏在Path#quadTo()和Path#cubicTo()方法中,一个是二阶贝塞尔曲线,一个是三阶贝塞尔曲线。当然,如果你想自己写个方法,依照上面贝塞尔的表达式也是可以的。不过一般没有必要,因为Android已经在native层为我们封装好了二阶和三阶的函数。
从一个二阶贝塞尔开始
自定义一个BezierView
初始化各个参数,花3s扫一下即可。
private Paint mPaint; private Path mPath; private Point startPoint; private Point endPoint; // 辅助点 private Point assistPoint; public BezierView(Context context) { this(context, null); } public BezierView(Context context, AttributeSet attrs) { this(context, attrs, 0); } public BezierView(Context context, AttributeSet attrs, int defStyleAttr) { super(context, attrs, defStyleAttr); init(context); } private void init(Context context) { mPaint = new Paint(); mPath = new Path(); startPoint = new Point(300, 600); endPoint = new Point(900, 600); assistPoint = new Point(600, 900); // 抗锯齿 mPaint.setAntiAlias(true); // 防抖动 mPaint.setDither(true); }
在onDraw中画二阶贝塞尔
// 画笔颜色 mPaint.setColor(Color.BLACK); // 笔宽 mPaint.setStrokeWidth(POINTWIDTH); // 空心 mPaint.setStyle(Paint.Style.STROKE); // 重置路径 mPath.reset(); // 起点 mPath.moveTo(startPoint.x, startPoint.y); // 重要的就是这句 mPath.quadTo(assistPoint.x, assistPoint.y, endPoint.x, endPoint.y); // 画路径 canvas.drawPath(mPath, mPaint); // 画辅助点 canvas.drawPoint(assistPoint.x, assistPoint.y, mPaint);
上面注释很清晰就不赘述了。示例中贝塞尔是可以跟着手指的滑动而变化,我一拍榴莲,肯定是复写了onTouchEvent()!
@Override public boolean onTouchEvent(MotionEvent event) { switch (event.getAction()) { case MotionEvent.ACTION_DOWN: case MotionEvent.ACTION_MOVE: assistPoint.x = (int) event.getX(); assistPoint.y = (int) event.getY(); Log.i(TAG, "assistPoint.x = " + assistPoint.x); Log.i(TAG, "assistPoint.Y = " + assistPoint.y); invalidate(); break; } return true; }
最后将我们自定义的BezierView添加到布局文件中。至此一个简单的二阶贝塞尔曲线就完成了。假设一下,在向下拉动的过程中,在曲线上增加一个“小超人”,360动态清理是不是就出来了呢?有兴趣的可以自己拓展下。
以一个三阶贝塞尔结束
天气预报曲线图示例
(图一)
(图二)概述
要想得到上图的效果,需要二阶贝塞尔和三阶贝塞尔配合。具体表现为,第一段和最后一段曲线为二阶贝塞尔,中间N段都为三阶贝塞尔曲线。
思路
先根据相邻点(P1,P2, P3)计算出相邻点的中点(P4, P5),然后再计算相邻中点的中点(P6)。然后将(P4,P6, P5)组成的线段平移到经过P2的直线(P8,P2,P7)上。接着根据(P4,P6,P5,P2)的坐标计算出(P7,P8)的坐标。最后根据P7,P8等控制点画出三阶贝塞尔曲线。
点和线的解释
黑色点:要经过的点,例如温度 蓝色点:两个黑色点构成线段的中点 黄色点:两个蓝色点构成线段的中点 灰色点:贝塞尔曲线的控制点 红色线:黑色点的折线图 黑色线:黑色点的贝塞尔曲线,也是我们最终想要的效果声明
为了方便讲解以及读者的理解。本篇以图一效果为例进行讲解。BezierView坐标都是根据屏幕动态生成的,想要图二的效果只需修改初始坐标,不用对代码做很大的修改即可实现。
那么,开始吧!
初始化参数
private static final String TAG = "BIZIER"; private static final int LINEWIDTH = 5; private static final int POINTWIDTH = 10; private Context mContext; /** 即将要穿越的点集合 */ private List mPoints = new ArrayList<>(); /** 中点集合 */ private List mMidPoints = new ArrayList<>(); /** 中点的中点集合 */ private List mMidMidPoints = new ArrayList<>(); /** 移动后的点集合(控制点) */ private List mControlPoints = new ArrayList<>(); private int mScreenWidth; private int mScreenHeight; private void init(Context context) { mPaint = new Paint(); mPath = new Path(); // 抗锯齿 mPaint.setAntiAlias(true); // 防抖动 mPaint.setDither(true); mContext = context; getScreenParams(); initPoints(); initMidPoints(this.mPoints); initMidMidPoints(this.mMidPoints); initControlPoints(this.mPoints, this.mMidPoints , this.mMidMidPoints); }
第一个函数获取屏幕宽高就不说了。紧接着初始化了初始点、中点、中点的中点、控制点。我们一个个的跟进。首先是初始点。
/** 添加即将要穿越的点 */ private void initPoints() { int pointWidthSpace = mScreenWidth / 5; int pointHeightSpace = 100; for (int i = 0; i < 5; i++) { Point point; // 一高一低五个点 if (i%2 != 0) { point = new Point((int) (pointWidthSpace*(i + 0.5)), mScreenHeight/2 - pointHeightSpace); } else { point = new Point((int) (pointWidthSpace*(i + 0.5)), mScreenHeight/2); } mPoints.add(point); } }
这里循环创建了一高一低五个点,并添加到List mPoints中。上文说道图一到图二只需修改这里的初始点即可。
/** 初始化中点集合 */ private void initMidPoints(List points) { for (int i = 0; i < points.size(); i++) { Point midPoint = null; if (i == points.size()-1){ return; }else { midPoint = new Point((points.get(i).x + points.get(i + 1).x)/2, (points.get(i).y + points.get(i + 1).y)/2); } mMidPoints.add(midPoint); } } /** 初始化中点的中点集合 */ private void initMidMidPoints(List midPoints){ for (int i = 0; i < midPoints.size(); i++) { Point midMidPoint = null; if (i == midPoints.size()-1){ return; }else { midMidPoint = new Point((midPoints.get(i).x + midPoints.get(i + 1).x)/2, (midPoints.get(i).y + midPoints.get(i + 1).y)/2); } mMidMidPoints.add(midMidPoint); } }
这里算出中点集合以及中点的中点集合,小学数学题没什么好说的。唯一需要注意的是他们数量的差别。
/** 初始化控制点集合 */ private void initControlPoints(List points, List midPoints, List midMidPoints){ for (int i = 0; i < points.size(); i ++){ if (i ==0 || i == points.size()-1){ continue; }else{ Point before = new Point(); Point after = new Point(); before.x = points.get(i).x - midMidPoints.get(i - 1).x + midPoints.get(i - 1).x; before.y = points.get(i).y - midMidPoints.get(i - 1).y + midPoints.get(i - 1).y; after.x = points.get(i).x - midMidPoints.get(i - 1).x + midPoints.get(i).x; after.y = points.get(i).y - midMidPoints.get(i - 1).y + midPoints.get(i).y; mControlPoints.add(before); mControlPoints.add(after); } } }
大家需要注意下这个方法的计算过程。以图一(P2,P4, P6,P8)为例。现在P2、P4、P6的坐标是已知的。根据由于(P8, P2)线段由(P4, P6)线段平移而来,所以可得如下结论:P2 - P6 = P8 - P4 。即P8 = P2 - P6 + P4。其余同理。
画辅助点以及对比折线图
@Override protected void onDraw(Canvas canvas) { super.onDraw(canvas); // *********************************************************** // ************* 贝塞尔进阶--曲滑穿越已知点 ********************** // *********************************************************** // 画原始点 drawPoints(canvas); // 画穿越原始点的折线 drawCrossPointsBrokenLine(canvas); // 画中间点 drawMidPoints(canvas); // 画中间点的中间点 drawMidMidPoints(canvas); // 画控制点 drawControlPoints(canvas); // 画贝塞尔曲线 drawBezier(canvas); }
可以看到,在画贝塞尔曲线之前我们画了一系列的辅助点,还有和贝塞尔曲线作对比的折线图。效果如图一。辅助点的坐标全都得到了,基本的画画就比较简单了。有能力的可跳过下面这段,直接进入
drawBezier(canvas)
方法。基本的画画这里只贴代码,如有疑问可评论或者私信。/** 画原始点 */ private void drawPoints(Canvas canvas) { mPaint.setStrokeWidth(POINTWIDTH); for (int i = 0; i < mPoints.size(); i++) { canvas.drawPoint(mPoints.get(i).x, mPoints.get(i).y, mPaint); } } /** 画穿越原始点的折线 */ private void drawCrossPointsBrokenLine(Canvas canvas) { mPaint.setStrokeWidth(LINEWIDTH); mPaint.setColor(Color.RED); // 重置路径 mPath.reset(); // 画穿越原始点的折线 mPath.moveTo(mPoints.get(0).x, mPoints.get(0).y); for (int i = 0; i < mPoints.size(); i++) { mPath.lineTo(mPoints.get(i).x, mPoints.get(i).y); } canvas.drawPath(mPath, mPaint); } /** 画中间点 */ private void drawMidPoints(Canvas canvas) { mPaint.setStrokeWidth(POINTWIDTH); mPaint.setColor(Color.BLUE); for (int i = 0; i < mMidPoints.size(); i++) { canvas.drawPoint(mMidPoints.get(i).x, mMidPoints.get(i).y, mPaint); } } /** 画中间点的中间点 */ private void drawMidMidPoints(Canvas canvas) { mPaint.setColor(Color.YELLOW); for (int i = 0; i < mMidMidPoints.size(); i++) { canvas.drawPoint(mMidMidPoints.get(i).x, mMidMidPoints.get(i).y, mPaint); } } /** 画控制点 */ private void drawControlPoints(Canvas canvas) { mPaint.setColor(Color.GRAY); // 画控制点 for (int i = 0; i < mControlPoints.size(); i++) { canvas.drawPoint(mControlPoints.get(i).x, mControlPoints.get(i).y, mPaint); } }
画贝塞尔曲线
/** 画贝塞尔曲线 */ private void drawBezier(Canvas canvas) { mPaint.setStrokeWidth(LINEWIDTH); mPaint.setColor(Color.BLACK); // 重置路径 mPath.reset(); for (int i = 0; i < mPoints.size(); i++){ if (i == 0){// 第一条为二阶贝塞尔 mPath.moveTo(mPoints.get(i).x, mPoints.get(i).y);// 起点 mPath.quadTo(mControlPoints.get(i).x, mControlPoints.get(i).y,// 控制点 mPoints.get(i + 1).x,mPoints.get(i + 1).y); }else if(i < mPoints.size() - 2){// 三阶贝塞尔 mPath.cubicTo(mControlPoints.get(2*i-1).x,mControlPoints.get(2*i-1).y,// 控制点 mControlPoints.get(2*i).x,mControlPoints.get(2*i).y,// 控制点 mPoints.get(i+1).x,mPoints.get(i+1).y);// 终点 }else if(i == mPoints.size() - 2){// 最后一条为二阶贝塞尔 mPath.moveTo(mPoints.get(i).x, mPoints.get(i).y);// 起点 mPath.quadTo(mControlPoints.get(mControlPoints.size()-1).x,mControlPoints.get(mControlPoints.size()-1).y, mPoints.get(i+1).x,mPoints.get(i+1).y);// 终点 } } canvas.drawPath(mPath,mPaint); }
注释太详细,都没什么好写的了。不过这里需要注意判断里面的条件,对起点和终点的判断一定要理解。要不然很可能会送你一个ArrayIndexOutOfBoundsException。
结束
贝塞尔曲线可以实现很多绚丽的效果,难的不是贝塞尔,而是good idea。
参考:http://www.2cto.com/kf/201604/497130.html