摘要: y=arctanx,则x=tanyarctanx′bai=1/tany′tany′=(siny/cosy)′=(cosycosy-siny(-siny))/cos²y=1/cos²y则arctanx′=cos²y=cos²y/(sin²y+cos²y)=1/(1+tan²y)=1/1+x²故最终答案 阅读全文
posted @ 2020-06-27 17:26 洪豆豆的记录 阅读(24920) 评论(0) 推荐(0) 编辑