un=(-1)^n ln(1+1/(√n)),un的级数条件收敛

设un=(-1)^n ln(1+1/(√n)), 则级数
A.\x05∑(n=1, ∞) un与∑(n=1, ∞) (un)^2收敛
B.\x05∑(n=1, ∞) un与∑(n=1, ∞) (un)^2都发散
C.\x05∑(n=1, ∞) un收敛而∑(n=1, ∞) (un)^2发散
D.\x05∑(n=1, ∞) un发散而∑(n=1, ∞) (un)^2收敛
请讲一下详细过程,谢谢,答案是先C

 

简单,un(-1)^n ln(1+1/(√n))等价于(-1)^n (1/(√n)),后者对应的是交错级数,故收敛;平方以后就成了调和级数了,是发散的,所以选C,

posted @ 2020-12-14 15:55  洪豆豆的记录  阅读(1037)  评论(1编辑  收藏  举报