样本方差概念解析

可以直接从样本数据得出(样本平均偏差平均值),

这样取到的平均值离(方差的期望值)还差了一点,

试想一下,例如样本指是线性增长的,可能取到整个取值区间的每一个值,

那么总有一个样本和总体样本的期望值相同,

那么所有样本都与总体样本的期望值取方差之后,

总有一项:((一个样本)与(总体样本的期望值)之差)等于0,

那么,最后真实的方差期望值不能包含那个值为0的项,

所以(n个样本与总体样本的期望之差)的非零值个数只有n-1个:(在样本值线性增长的情况下)

因此我们期望的样本方差只是((n个样本与总体样本的期望之差)的平方)/(n-1);

这个例子只是为了帮助记忆,并且不算错,大多数情况下还是能清晰的记住概念并且能够正确运用即可;

重在(正确)理解(概念),概如是也.

 

posted @ 2020-03-29 12:40  洪豆豆的记录  阅读(1368)  评论(0编辑  收藏  举报