索引,复合索引
索引,复合索引
这里只看BTree
索引,至于哈希索引和全文索引本文暂不讨论。
前言:
索引是有效使用数据库的基础,但你的数据量很小的时候,或许通过扫描整表来存取数据的性能还能接受,但当数据量极大时,当访问量极大时,就一定需要通过索引的辅助才能有效地存取数据。一般索引建立的好坏是性能好坏的成功关键。
使用InnoDb
作为数据引擎的Mysql
和有聚集索引的SqlServer
的数据存储结构有点类似,虽然在物理层面,他们都存储在Page
上,但在逻辑上面,我们可以把数据分为三块:数据区域,索引区域,主键区域,他们通过主键的值作为关联,配合工作。
一个表数据空间中的索引数据区域中有很多索引,每一个索引都是一颗B+Tree,在非聚集索引的B+Tree中索引的值作为B+Tree的节点的Key,数据主键作为节点的Value。
在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点数据域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主键索引。这种索引也叫做聚集索引。
聚集索引查询速度比非聚集索引快,是因为聚集索引只查询一次,查询到的元素的key就是主键,value就是数据记录。
非聚集索引查询要查询两次,第一次查询到的元素的value为数据记录的主键,再根据主键查询匹配的数据记录。
因为InnoDB
的数据文件本身要按主键聚集,所以InnoDB
要求表必须有主键(MyISAM
可以没有),如果没有显式指定,则MySQL
系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL
自动为InnoDB
表生成一个隐含字段作为主键,这个字段长度为6
个字节,类型为长整形。
磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,
寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;
传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。
那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,
但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,
因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。
每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
复合索引:(索引的最左匹配特性)
当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+树是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;
但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。
比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了,
这个是非常重要的性质,即索引的最左匹配特性。
优化原则:
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = '2014-05-29'就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp('2014-05-29');
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可
慢查询优化基本步骤:
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析
参考
https://tech.meituan.com/mysql-index.html
https://www.cnblogs.com/dreamworlds/p/5398535.html
http://blog.codinglabs.org/articles/theory-of-mysql-index.html