Java 线程池的介绍以及工作原理

在什么情况下使用线程池?

1.单个任务处理的时间比较短
2.将需处理的任务的数量大

使用线程池的好处:

1. 降低资源消耗:      通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
2. 提高响应速度:      当任务到达时,任务可以不需要等到线程创建就能立即执行。
3. 提高线程的可管理性:   线程是稀缺资源,如果无限制的创建。不仅仅会降低系统的稳定性,使用线程池可以统一分配,调优和监控。但是要做到合理的利用线程池。必须对于其实现原理了如指掌。

一个线程池包括以下四个基本组成部分:
1、线程池管理器(ThreadPool):用于创建并管理线程池,包括 创建线程池,销毁线程池,添加新任务;
2、工作线程(PoolWorker):线程池中线程,在没有任务时处于等待状态,可以循环的执行任务;
3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行,它主要规定了任务的入口,任务执行完后的收尾工作,任务的执行状态等;
4、任务队列(taskQueue):用于存放没有处理的任务。提供一种缓冲机制。

在JDK1.6中研究ThreadPoolExecutor类:

    volatile int runState;
    static final int RUNNING    = 0;
    static final int SHUTDOWN   = 1;
    static final int STOP       = 2;
    static final int TERMINATED = 3;

runState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

当创建线程池后,初始时,线程池处于RUNNING状态;

如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;

如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;

当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。

execute方法:

 public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
            if (runState == RUNNING && workQueue.offer(command)) {
                if (runState != RUNNING || poolSize == 0)
                    ensureQueuedTaskHandled(command);
            }
            else if (!addIfUnderMaximumPoolSize(command))
                reject(command); // is shutdown or saturated
        }
    }

addIfUnderCorePoolSize方法检查如果当前线程池的大小小于配置的核心线程数,说明还可以创建新线程,则启动新的线程执行这个任务。

   private boolean addIfUnderCorePoolSize(Runnable firstTask) {
        Thread t = null;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (poolSize < corePoolSize && runState == RUNNING)
                t = addThread(firstTask);
        } finally {
            mainLock.unlock();
        }
        return t != null;
    }

addThread:

  private Thread addThread(Runnable firstTask) {
        Worker w = new Worker(firstTask);
        Thread t = threadFactory.newThread(w);
        boolean workerStarted = false;
        if (t != null) {
            if (t.isAlive()) // precheck that t is startable
                throw new IllegalThreadStateException();
            w.thread = t;
            workers.add(w);
            int nt = ++poolSize;
            if (nt > largestPoolSize)
                largestPoolSize = nt;
            try {
                t.start();
                workerStarted = true;
            }
            finally {
                if (!workerStarted)
                    workers.remove(w);
            }
        }
        return t;
    }

Worker,在ThreadPoolExecutor中的内部类

  private final class Worker implements Runnable {
        /**
         * The runLock is acquired and released surrounding each task
         * execution. It mainly protects against interrupts that are
         * intended to cancel the worker thread from instead
         * interrupting the task being run.
         */
        private final ReentrantLock runLock = new ReentrantLock();

        /**
         * Initial task to run before entering run loop. Possibly null.
         */
        private Runnable firstTask;

        /**
         * Per thread completed task counter; accumulated
         * into completedTaskCount upon termination.
         */
        volatile long completedTasks;

        /**
         * Thread this worker is running in.  Acts as a final field,
         * but cannot be set until thread is created.
         */
        Thread thread;

        /**
         * Records that the thread assigned to this worker has actually
         * executed our run() method. Such threads are the only ones
         * that will be interrupted.
         */
        volatile boolean hasRun = false;

        Worker(Runnable firstTask) {
            this.firstTask = firstTask;
        }

        boolean isActive() {
            return runLock.isLocked();
        }

        /**
         * Interrupts thread if not running a task.
         */
        void interruptIfIdle() {
            final ReentrantLock runLock = this.runLock;
            if (runLock.tryLock()) {
                try {
                    if (hasRun && thread != Thread.currentThread())
                        thread.interrupt();
                } finally {
                    runLock.unlock();
                }
            }
        }

        /**
         * Interrupts thread even if running a task.
         */
        void interruptNow() {
            if (hasRun)
                thread.interrupt();
        }

        /**
         * Runs a single task between before/after methods.
         */
        private void runTask(Runnable task) {
            final ReentrantLock runLock = this.runLock;
            runLock.lock();
            try {
                /*
                 * If pool is stopping ensure thread is interrupted;
                 * if not, ensure thread is not interrupted. This requires
                 * a double-check of state in case the interrupt was
                 * cleared concurrently with a shutdownNow -- if so,
                 * the interrupt is re-enabled.
                 */
                if ((runState >= STOP ||
                    (Thread.interrupted() && runState >= STOP)) &&
                    hasRun)
                    thread.interrupt();
                /*
                 * Track execution state to ensure that afterExecute
                 * is called only if task completed or threw
                 * exception. Otherwise, the caught runtime exception
                 * will have been thrown by afterExecute itself, in
                 * which case we don't want to call it again.
                 */
                boolean ran = false;
                beforeExecute(thread, task);
                try {
                    task.run();
                    ran = true;
                    afterExecute(task, null);
                    ++completedTasks;
                } catch (RuntimeException ex) {
                    if (!ran)
                        afterExecute(task, ex);
                    throw ex;
                }
            } finally {
                runLock.unlock();
            }
        }

        /**
         * Main run loop
         */
        public void run() {
            try {
                hasRun = true;
                Runnable task = firstTask;
                firstTask = null;
                while (task != null || (task = getTask()) != null) {
                    runTask(task);
                    task = null;
                }
            } finally {
                workerDone(this);
            }
        }
    }
View Code

ensureQueuedTaskHandled:

判断如果当前状态不是RUNING,则当前任务不加入到任务队列中,判断如果状态是停止,线程数小于允许的最大数,且任务队列还不空,则加入一个新的工作线程到线程池来帮助处理还未处理完的任务。

  private void ensureQueuedTaskHandled(Runnable command) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        boolean reject = false;
        Thread t = null;
        try {
            int state = runState;
            if (state != RUNNING && workQueue.remove(command))
                reject = true;
            else if (state < STOP &&
                     poolSize < Math.max(corePoolSize, 1) &&
                     !workQueue.isEmpty())
                t = addThread(null);
        } finally {
            mainLock.unlock();
        }
        if (reject)
            reject(command);
    }
  void reject(Runnable command) {
        handler.rejectedExecution(command, this);
    }

addIfUnderMaximumPoolSize:

addIfUnderMaximumPoolSize检查如果线程池的大小小于配置的最大线程数,并且任务队列已经满了(就是execute方法试图把当前线程加入任务队列时不成功),

说明现有线程已经不能支持当前的任务了,但线程池还有继续扩充的空间,就可以创建一个新的线程来处理提交的任务。

  private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
        Thread t = null;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (poolSize < maximumPoolSize && runState == RUNNING)
                t = addThread(firstTask);
        } finally {
            mainLock.unlock();
        }
        return t != null;
    }

整个流程:

1、如果线程池的当前大小还没有达到基本大小(poolSize < corePoolSize),那么就新增加一个线程处理新提交的任务;
2、如果当前大小已经达到了基本大小,就将新提交的任务提交到阻塞队列排队,等候处理workQueue.offer(command);
3、如果队列容量已达上限,并且当前大小poolSize没有达到maximumPoolSize,那么就新增线程来处理任务;
4、如果队列已满,并且当前线程数目也已经达到上限,那么意味着线程池的处理能力已经达到了极限,此时需要拒绝新增加的任务。至于如何拒绝处理新增的任务,取决于线程池的饱和策略RejectedExecutionHandler。

================================================

设置合适的线程池大小:

如果是CPU密集型的任务,那么良好的线程个数是实际CPU处理器的个数的1倍;

如果是I/O密集型的任务,那么良好的线程个数是实际CPU处理器个数的1.5倍到2倍

线程池中线程数量:

View Code

为什么+1,与CPU核数相等,表示满核运行,+1的话表示在CPU上存在竞争,两者的竞争力不一样。稍微高一点负荷是不影响的。

http://ifeve.com/how-to-calculate-threadpool-size/

==================================================================================

Java中提供了几个Executors类的静态方法:

   public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<Runnable>());
    }
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                        0L, TimeUnit.MILLISECONDS,
                        new LinkedBlockingQueue<Runnable>()));
    }
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                60L, TimeUnit.SECONDS,
                new SynchronousQueue<Runnable>());
    }

newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,它使用的LinkedBlockingQueue;

newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使用的LinkedBlockingQueue;

newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。

任务拒绝策略:

当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

demo:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class Main {
    public static void main(String[] args) {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS,
                new ArrayBlockingQueue<Runnable>(5));

        for(int i=0;i<15;i++){
            MyTask myTask = new MyTask(i);
            executor.execute(myTask);
            System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+
                    executor.getQueue().size()+",已执行玩别的任务数目:"+executor.getCompletedTaskCount());
        }
        executor.shutdown();
    }
}

class MyTask implements Runnable {
    private int taskNum;

    public MyTask(int num) {
        this.taskNum = num;
    }

    @Override
    public void run() {
        System.out.println("正在执行task "+taskNum);
        try {
            Thread.currentThread().sleep(0);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("task "+taskNum+"执行完毕");
    }
}
线程池中线程数目:1,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
线程池中线程数目:2,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
线程池中线程数目:3,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 0
线程池中线程数目:4,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 3
正在执行task 1
task 3执行完毕
task 1执行完毕
线程池中线程数目:5,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
task 0执行完毕
正在执行task 5
线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:2
线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:3
线程池中线程数目:5,队列中等待执行的任务数目:2,已执行玩别的任务数目:3
线程池中线程数目:5,队列中等待执行的任务数目:3,已执行玩别的任务数目:3
线程池中线程数目:5,队列中等待执行的任务数目:4,已执行玩别的任务数目:3
线程池中线程数目:5,队列中等待执行的任务数目:5,已执行玩别的任务数目:3
task 5执行完毕
正在执行task 6
task 6执行完毕
正在执行task 7
task 7执行完毕
正在执行task 8
task 8执行完毕
正在执行task 9
task 9执行完毕
正在执行task 10
task 10执行完毕
线程池中线程数目:6,队列中等待执行的任务数目:0,已执行玩别的任务数目:9
线程池中线程数目:6,队列中等待执行的任务数目:1,已执行玩别的任务数目:9
线程池中线程数目:6,队列中等待执行的任务数目:2,已执行玩别的任务数目:9
线程池中线程数目:6,队列中等待执行的任务数目:3,已执行玩别的任务数目:9
正在执行task 12
正在执行task 14
正在执行task 13
task 14执行完毕
task 13执行完毕
task 12执行完毕
正在执行task 2
task 2执行完毕
正在执行task 4
task 4执行完毕
正在执行task 11
task 11执行完毕
View Code

 

http://jet-han.oschina.io/2017/08/06/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B%E4%B9%8B%E7%BA%BF%E7%A8%8B%E6%B1%A0ThreadPoolExecutor/

http://www.ibm.com/developerworks/cn/java/j-jtp0730/

http://www.cnblogs.com/dolphin0520/p/3932921.html

http://www.cnblogs.com/guguli/p/5198894.html

http://www.infoq.com/cn/articles/executor-framework-thread-pool-task-execution-part-01/

http://blog.csdn.net/aitangyong/article/details/38842643?utm_source=tuicool&utm_medium=referral

http://blog.csdn.net/aitangyong/article/details/38822505

http://www.jasongj.com/java/thread_safe/

posted @ 2016-11-16 15:31  hongdada  阅读(463)  评论(0编辑  收藏  举报