Kafka 日志存储及其清除策略
日志存储结构
Kafka存储结构图:
kafka 中消息是以主题 topic 为基本单位进行归类的,这里的 topic 是逻辑上的概念,实际上在磁盘存储是根据分区存储的,每个主题可以分为多个分区、分区的数量可以在主题创建的时候进行指定。例如下面 kafka 命令创建了一个 topic 为 test 的主题、该主题下有 4 个分区、每个分区有两个副本保证高可用。
./bin/kafka-topics.sh --create --zookeeper 127.0.0.1:2181 --replication-factor 2 --partitions 4 --topic test
分区的修改除了在创建的时候指定。还可以动态的修改。如下将 kafka 的 test 主题分区数修改为 12 个
./kafka-topics.sh --alter --zookeeper 127.0.0.1:2181 --topic test --partitions 12
分区内每条消息都会被分配一个唯一的消息 id,也就是我们通常所说的 offset, 因此 kafak 只能保证每一个分区内部有序性,不能保证全局有序性。
如果分区设置的合理,那么所有的消息都可以均匀的分布到不同的分区中去,这样可以实现水平扩展。不考虑多副本的情况下,一个分区对应一个 log 日志、如上图所示。为了防止 log 日志过大,kafka 又引入了日志分段(LogSegment)的概念,将 log 切分为多个 LogSegement,相当于一个巨型文件被平均分配为相对较小的文件,这样也便于消息的维护和清理。事实上,Log 和 LogSegement 也不是纯粹物理意义上的概念,Log 在物理上只是以文件夹的形式存储,而每个 LogSegement 对应于磁盘上的一个日志文件和两个索引文件,以及可能的其他文件(比如以".txindex"为后缀的事务索引文件)。
kafak 中的 Log 对应了一个命名为<topic>-<partition>
的文件夹。举个例子、假如有一个 test 主题,此主题下游 3 个分区,那么在实际物理上的存储就是 "test-0","test-1","test-2" 这三个文件夹。
向 Log 中写入消息是顺序写入的。只有最后一个 LogSegement 才能执行写入操作,在此之前的所有 LogSegement 都不能执行写入操作。为了方便描述,我们将最后一个 LogSegement 成为"ActiveSegement",即表示当前活跃的日志分段。随着消息的不断写入,当 ActiveSegement 满足一定的条件时,就需要创建新的 activeSegement,之后在追加的消息写入新的 activeSegement。
为了便于消息的检索,每个 LogSegement 中的日志文件(以".log" 为文件后缀)都有对应的两个文件索引:偏移量索引文件(以".index" 为文件后缀)和时间戳索引文件(以".timeindex"为文件后缀)。每个 LogSegement 都有一个“基准偏移量” baseOffset,用来标识当前 LogSegement 中第一条消息的 offset。偏移量是一个 64 位的长整形。日志文件和两个索引文件都是根据基准偏移量(baseOffset)命名的,名称固定为 20 位数字,没有达到的位数则用 0 填充。比如第一个 LogSegment 的基准偏移量为 0,对应的日志文件为 00000000000000000000.log
示例中第 2 个 LogSegment 对应的基准位移是 256,也说明了该 LogSegment 中的第一条消息的偏移量为 256,同时可以反映出第一个 LogSegment 中共有 256 条消息(偏移量从 0 至 255 的消息)。
注意每个 LogSegment 中不只包含“.log”“.index”“.timeindex”这 3 种文件,还可能包含“.deleted”“.cleaned”“.swap”等临时文件,以及可能的“.snapshot”“.txnindex”“leader-epoch-checkpoint”等文件。
日志索引
kafka的日志文件索引是用来快速检索日志的,在kafka中日志索引分为2种类,kafka中索引以稀疏索引的方式构建索引,它不保证每个消息在索引文件中都存在索引。
每当写入一定数量log.index.interval.bytes default(4KB = 4096)的时候,偏移量索引以及时间戳索引各自创建一个对应的索引项,我们可以通过该参数调整索引的密度,通过MappedByteBuffer将索引文件映射到内存中。
日志分段文件切分条件如下
- 当日志分段文件的大小超过log.segment.bytes=1073741824(1GB)时;
- 当日志分段中的最大时间戳与当前系统的差值大于log.roll.ms或log.roll.hours,默认只配置了log.roll.hours =168(7天),前者优先级高
- 偏移量索引文件或者时间戳索引文件大小超过brokerlog.index.size.max.bytes=10MB
- 新追加消息的offset-baseOffset > Integer.MAX_VALUE时,也就是相对位移过大,用Integer-4个字节存不下了。
offset索引
offset索引格式
偏移量索引分为2个部分,总共占8个字节
具体的偏移量索引项如下图
- relativeOffset(4B)
- 消息的相对偏移量,即
offset - baseOffset
,其中baseOffset为整个segmentLogFile的起始消息的offset。 - 平常的offset占用8个Byte,而ralativeOffset只需要占用4个Byte
- 消息的相对偏移量,即
- position(4B)
- 物理地址,也就是日志在分段日志文件中的实际位置。
查看日志以及索引文件的方式
#以下2种方式都行
bin/kafka-run-class.sh kafka.tools.DumpLogSegments --files /cxxxxxx.log
bin/kafka-dump-log.sh --files /xxxxx.index
>>>>>>
(base) bogon:topic1-0 shufang$ kafka-dump-log.sh --files 00000000000000000000.index
Dumping 00000000000000000000.index
offset: 45 position: 4140 #代表团一个RecordBatch
offset: 90 position: 8266 #代表另一个RecordBatch
offset索引的检索流程
假如有以下索引文件与分段日志文件,我们该如何找到偏移量为23的消息数据?
- 首先通过二分法找到不大于23的最大偏移量索引【22,656】;
- 然后从position(656)开始顺序查找偏移量为23的消息。
注意⚠️:log.index.size.max.bytes
必须是8的整数倍,如果你设置成67,那么系统会默认帮你纠正成64。
时间戳索引
时间戳索引格式
时间戳索引分为2部分,公占12个字节,具体索引样式如下
- timestamp
- 当前日志分段文件中建立索引的消息的时间戳
- 为了保证时间戳大的单调递增,我们可以将
log.message.timestamp.type
设置成logApendTime,而CreateTime不能保证
- relativeoffset
- 时间戳对应消息的相对偏移量
具体时间戳索引的检索流程
- 首先在时间戳索引文件中找到不大于该时间戳的最大时间戳对应的最大索引项【1526384718283,28】;
- 然后在偏移量索引文件中检索不超过对应relativeoffset(28)的最大偏移量索引的项【26,838】;
- 然后按照偏移量索引的检索方式找到对应的具体消息。
注意⚠️:时间戳索引文件的大小必须为12B的倍数。
Kafka消息格式
日志清除策略
Kafka将消息存储在磁盘中,为了控制磁盘占用空间的不断增加就需要对消息做一定的清理操作。Kafka中每一个分区partition都对应一个日志文件,而日志文件又可以分为多个日志分段文件,这样也便于日志的清理操作。Kafka提供了两种日志清理策略:
日志删除(Log Deletion):按照一定的保留策略来直接删除不符合条件的日志分段。
日志压缩(Log Compaction):针对每个消息的key进行整合,对于有相同key的的不同value值,只保留最后一个版本。
我们可以通过broker端参数log.cleanup.policy
来设置日志清理策略,此参数默认值为delete
,即采用日志删除的清理策略。如果要采用日志压缩的清理策略的话,就需要将log.cleanup.policy设置为“compact”,并且还需要将log.cleaner.enable(默认值为true)设定为true。通过将log.cleanup.policy参数设置为“delete,compact”还可以同时支持日志删除和日志压缩两种策略。
日志清理的粒度可以控制到topic级别,比如与log.cleanup.policy对应的主题级别的参数为cleanup.policy,为了简化说明,本文只采用broker端参数做陈述,如若需要topic级别的参数可以查看官方文档。
日志删除-Log Deletion
Kafka日志管理器中会有一个专门的日志删除任务来周期性检测和删除不符合保留条件的日志分段文件,这个周期可以通过broker端参数log.retention.check.interval.ms来配置,默认值为300,000,即5分钟。
基于日志大小
日志删除任务会检查当前日志的大小是否超过设定的阈值retentionSize来寻找可删除的日志分段的文件集合deletableSegments
retentionSize可以通过broker端参数log.retention.bytes来配置,默认值为-1,表示无穷大。注意log.retention.bytes配置的是日志文件的总大小,而不是单个的日志分段的大小,一个日志文件包含多个日志分段。
-
先计算日志文件的总大小size和retentionSize的差值diff,即计算需要删除的日志总大小
-
然后从日志文件中的第一个日志分段开始进行查找可删除的日志分段的文件集合deletableSegments。
-
查找出deletableSegments之后就执行删除操作
这个删除操作和基于时间的保留策略的删除操作相同,这里不再赘述。
基于时间
日志删除任务会检查当前日志文件中是否有保留时间超过设定的阈值retentionMs来寻找可删除的的日志分段文件集合deletableSegments
retentionMs
可以通过broker端参数log.retention.hours、log.retention.minutes以及log.retention.ms来配置,其中log.retention.ms的优先级最高,log.retention.minutes次之,log.retention.hours最低。
默认情况下只配置了log.retention.hours参数,其值为168,故默认情况下日志分段文件的保留时间为7天。
Kafka会查找日志段的时间戳索引文件中的最后一条记录,如果最后一条largestTimeStamp小于0,则取最近修改时间lastModifiedTime。
使用时间戳largestTimeStamp,因为最后修改时间lastModifiedTime可以被修改,比如touch,或分区副本重分配。
当确认完需要删除的日志段以后,需要进行以下删除操作:
- 从日志对象中所维护日志分段的跳跃表
ConcurrentSkipListMap
中移除待删除的日志分段,保证没有线程对这些日志分段进行读取操作。 - 为日志段中的所有文件加上.delete后缀,也包含日志分段对应的索引文件。
- Kafka中会有一个命名为"delete-file"的延迟任务来删除这些无效的日志数据,该任务延迟执行时间可以通过file.delete.delay.ms参数来设置,默认值为60000,即1分钟
假如当前日志段中也有需要删除的数据,那么kafka会先进行分段,创建一个新的活跃日志段,然后执行删除操作。
基于日志起始偏移量
一般情况下日志文件的起始偏移量logStartOffset等于第一个日志分段的baseOffset,但是这并不是绝对的,logStartOffset的值可以通过DeleteRecordsRequest请求、日志的清理和截断等操作修改。
删除策略:
某日志分段的下一个日志分段的baseOffset是否小于等于logStartOffset,若是则可以删除此日志分段。
参考上图,假设logStartOffset等于25,日志分段1的起始偏移量为0,日志分段2的起始偏移量为11,日志分段3的起始偏移为23,那么我们通过如下动作收集可删除的日志分段的文件集合deletableSegments:
- 从头开始遍历每个日志分段,日志分段1的下一个日志分段的起始偏移量为11,小于logStartOffset的大小,将日志分段1加入到deletableSegments中;
- 日志分段2的下一个日志偏移量的起始偏移量为23,也小于logStartOffset的大小,将日志分段2页加入到deletableSegments中;
- 日志分段3的下一个日志偏移量的baseOffset为30,在logStartOffset的右侧,故从日志分段3开始的所有日志分段都不会被加入到deletableSegments中。
收集完可删除的日志分段的文件集合之后的删除操作同基于日志大小的保留策略和基于时间的保留策略相同,这里不再赘述。
日志压缩-Log Compaction
topic __consumer_offsets
默认为日志压缩策略
对于有相同key的的不同value值,只保留最后一个版本。
如果应用只关心key对应的最新value值,可以开启Kafka的日志清理功能,Kafka会定期将相同key的消息进行合并,只保留最新的value值。
Log Compaction 有如下特点:
- messages的顺序仍然是保留的,log compaction 仅移除一些messages,但不会重新对它们进行排序
- 一条message的offset是无法改变的(immutable),如果一条message缺失,则offset会直接被跳过
- 被删除的records在一段时间内仍然可以被consumers访问到,这段时间由参数delete.retention.ms(默认为24小时)控制,日志压缩只有在一个segment被commit的时候执行。
Log Compaction执行过后的日志分段的大小会比原先的日志分段的要小,为了防止出现太多的小文件,Kafka在实际清理过程中并不对单个的日志分段进行单独清理,而是会将日志文件中offset从0至firstUncleanableOffset的所有日志分段进行分组,每个日志分段只属于一组,分组策略为:按照日志分段的顺序遍历,每组中日志分段的占用空间大小之和不超过segmentSize(可以通过broker端参数log.segments.bytes设置,默认值为1GB),且对应的索引文件占用大小之和不超过maxIndexSize(可以通过broker端参数log.index.interval.bytes设置,默认值为10MB)。同一个组的多个日志分段清理过后,只会生成一个新的日志分段。
参考上图,假设所有的参数配置都为默认值,在Log Compaction之前checkpoint的初始值为0。执行第一次Log Compaction之后,每个非活跃的日志分段的大小都有所缩减,checkpoint的值也有所变化。执行第二次Log Compaction时会将组队成[0.4GB, 0.4GB]、[0.3GB, 0.7GB]、[0.3GB]、[1GB]这4个分组,并且从第二次Log Compaction开始还会涉及墓碑消息的清除。同理,第三次Log Compaction过后的情形可参考上图尾部。Log Compaction过程中会将对每个日志分组中需要保留的消息拷贝到一个以“.clean”为后缀的临时文件中,此临时文件以当前日志分组中第一个日志分段的文件名命名,例如:00000000000000000000.log.clean。Log Compaction过后将“.clean”的文件修改为以“.swap”后缀的文件,例如:00000000000000000000.log.swap,然后删除掉原本的日志文件,最后才把文件的“.swap”后缀去掉,整个过程中的索引文件的变换也是如此,至此一个完整Log Compaction操作才算完成。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 【.NET】调用本地 Deepseek 模型
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库
2020-11-24 zsh安装powerlevel10k样式