MapReduce案例----影评分析(年份,电影id,电影名字,平均评分)

题目:

 1 现有如此三份数据:(这里只需用后两份)
 2 1、users.dat    数据格式为:  2::M::56::16::70072
 3 对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String
 4 对应字段中文解释:用户id,性别,年龄,职业,邮政编码
 5  
 6 2、movies.dat        数据格式为:1::Toy Story (1995)::Animation|Children's|Comedy  ;  2::Jumanji (1995)::Adventure|Children's|Fantasy  ;  3::Grumpier Old Men (1995)::Comedy|Romance
 7 对应字段为:MovieID BigInt, Title String, Genres String
 8 对应字段中文解释:电影ID,电影名字,电影类型
 9  
10 3、ratings.dat        数据格式为:  1::1193::5::978300760  ;  1::661::3::978302109  ;  1::914::3::978301968
11 对应字段为:UserID BigInt, MovieID BigInt, Rating Double, Timestamped String
12 对应字段中文解释:用户ID,电影ID,评分,评分时间戳
13  
14 用户ID,电影ID,评分,评分时间戳,性别,年龄,职业,邮政编码,电影名字,电影类型
15 userid, movieId, rate, ts, gender, age, occupation, zipcode, movieName, movieType
16 需求:
17     关联两张表。
18     计算每部电影的平均评分,并按评分大小进行排序。评分一样,按照电影名排序。
191):按照年份进行分组,要求结果展示形式:
20         年份,电影id,电影名字,平均分。

思路:

  首先从 ratings.dat 中计算出电影id,平均评分。得出一个中间表。

  通过分析,中间表比 movis.dat 要小,所以优先考虑将中间表加载到内存中,写入到一个hashmap中,做 map join。

  Map 端处理movies.dat 中的数据,根据电影 id 关联 hashmap,得到该电影的平均评分,并提取出电影的年份。

  将年份,电影id,电影名字,平均评分封装到一个对象中,然后自定义排序规则。按照电影平均评分大小排序。

  然后自定义分区,将相同年份的分到一个分区中。使得相同年份的数据出现在一个文件中。

求出平均评分代码:

 1 package com.lhb.demo;
 2 import org.apache.hadoop.conf.Configuration;
 3 import org.apache.hadoop.fs.FileSystem;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.DoubleWritable;
 6 import org.apache.hadoop.io.LongWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 import java.io.IOException;
14 
15 public class Test1AvgRate {
16     //map端
17     public static class Test1AvgRateMapper extends Mapper<LongWritable, Text, LongWritable, DoubleWritable> {
18         protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
19             String[] split = value.toString().split("::");
20             if (split.length >= 4) {
21                 context.write(new LongWritable(Long.valueOf(split[1])), new DoubleWritable(Double.valueOf(split[2])));
22             }
23         }
24     }
25     //reducer端
26     public static class Test1AvgRateReducer extends Reducer<LongWritable, DoubleWritable, LongWritable, DoubleWritable> {
27         protected void reduce(LongWritable key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
28             double sum = 0.0;
29             int num = 0;
30             for (DoubleWritable value : values) {
31                 sum += value.get();
32                 num++;
33             }
34             Double avg = sum / num;
35             context.write(key, new DoubleWritable(avg));
36         }
37     }
38     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
39         Configuration conf = new Configuration();
40         Job job = Job.getInstance(conf);
41         job.setJarByClass(Test1AvgRate.class);
42         job.setMapperClass(Test1AvgRateMapper.class);
43         job.setReducerClass(Test1AvgRateReducer.class);
44 
45         //指定map和reduce输出数据的类型
46         job.setMapOutputKeyClass(LongWritable.class);
47         job.setMapOutputValueClass(DoubleWritable.class);
48         job.setOutputKeyClass(LongWritable.class);
49         job.setOutputValueClass(DoubleWritable.class);
50 
51         FileInputFormat.setInputPaths(job, new Path("文件所在路径"));
52         FileSystem fs = FileSystem.get(conf);
53         Path outPath = new Path("输出路径");
54         //判断文件是否存在
55         if (fs.exists(outPath)) {
56             fs.delete(outPath, true);
57         }
58         FileOutputFormat.setOutputPath(job, outPath);
59         boolean b = job.waitForCompletion(true);
60         System.exit(b ? 0 : 1);
61     }
62 }        

 

平均评分部分显示结果:

 

案例1代码:

 1 package com.lhb.demo;
 2 
 3 import org.apache.hadoop.io.WritableComparable;
 4 import java.io.DataInput;
 5 import java.io.DataOutput;
 6 import java.io.IOException;
 7 
 8 public class MovieBean1 implements WritableComparable<MovieBean1> {
 9     private int movie_year;
10     private long movie_id;
11     private String movie_name;
12     private double movie_avg_rae;
13 
14     public MovieBean1() {
15     }
16 
17     public MovieBean1(int movie_year, long movie_id, String movie_name, double movie_avg_rae) {
18         this.movie_year = movie_year;
19         this.movie_id = movie_id;
20         this.movie_name = movie_name;
21         this.movie_avg_rae = movie_avg_rae;
22     }
23 
24     public int getMovie_year() {
25         return movie_year;
26     }
27 
28     public void setMovie_year(int movie_year) {
29         this.movie_year = movie_year;
30     }
31 
32     public long getMovie_id() {
33         return movie_id;
34     }
35 
36     public void setMovie_id(long movie_id) {
37         this.movie_id = movie_id;
38     }
39 
40     public String getMovie_name() {
41         return movie_name;
42     }
43 
44     public void setMovie_name(String movie_name) {
45         this.movie_name = movie_name;
46     }
47 
48     public double getMovie_avg_rae() {
49         return movie_avg_rae;
50     }
51 
52     public void setMovie_avg_rae(double movie_avg_rae) {
53         this.movie_avg_rae = movie_avg_rae;
54     }
55 
56     public String toString() {
57         return "movie{" +
58                 "year=" + movie_year +
59                 ", id=" + movie_id +
60                 ", name='" + movie_name + '\'' +
61                 ", avg=" + movie_avg_rae +
62                 '}';
63     }
64 
65     public int compareTo(MovieBean1 o) {
66         if (o.movie_year == this.movie_year) {
67             return o.movie_avg_rae > this.movie_avg_rae ? 1 : -1;
68         } else {
69             return o.movie_year > this.movie_year ? 1 : -1;
70         }
71     }
72 
73     public void write(DataOutput dataOutput) throws IOException {
74         dataOutput.writeInt(this.movie_year);
75         dataOutput.writeLong(this.movie_id);
76         dataOutput.writeUTF(this.movie_name);
77         dataOutput.writeDouble(this.movie_avg_rae);
78     }
79 
80     public void readFields(DataInput dataInput) throws IOException {
81         this.movie_year = dataInput.readInt();
82         this.movie_id = dataInput.readLong();
83         this.movie_name = dataInput.readUTF();
84         this.movie_avg_rae = dataInput.readDouble();
85     }
86 }
 1 package com.lhb.test.homework.test;
 2 import org.apache.hadoop.io.NullWritable;
 3 import org.apache.hadoop.mapreduce.Partitioner;
 4 
 5 public class YearPartitioner extends Partitioner<MovieBean1, NullWritable> {
 6     public int getPartition(MovieBean1 movieBean1, NullWritable nullWritable, int i) {
 7         int movie_year = movieBean1.getMovie_year();
 8         return movie_year % i;
 9     }
10 }
 1 package com.lhb.demo;
 2 
 3 import org.apache.commons.lang.StringUtils;
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.FileSystem;
 6 import org.apache.hadoop.fs.Path;
 7 import org.apache.hadoop.io.LongWritable;
 8 import org.apache.hadoop.io.NullWritable;
 9 import org.apache.hadoop.io.Text;
10 import org.apache.hadoop.mapreduce.Job;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
14 import java.io.BufferedReader;
15 import java.io.FileReader;
16 import java.io.IOException;
17 import java.util.HashMap;
18 import java.util.Map;
19 import java.util.regex.Matcher;
20 import java.util.regex.Pattern;
21 
22 public class Test01 {
23     public static class Test01Mapper extends Mapper<LongWritable, Text, MovieBean1, NullWritable> {
24         Map<Long, Double> rateMap;
25 
26         protected void setup(Context context) throws IOException, InterruptedException {
27             rateMap = new HashMap<Long, Double>();
28 
29             BufferedReader br = new BufferedReader(new FileReader("求出平均评分的目录"));
30             String line = "";
31             while (StringUtils.isNotBlank((line = br.readLine()))) {
32                 String[] split = line.split("\t");
33                 if (split.length >= 2) {
34                     rateMap.put(Long.valueOf(split[0]), Double.valueOf(split[1]));
35                 }
36             }
37             System.out.println(rateMap);
38         }
39 
40         protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
41             String[] split = value.toString().split("::");
42             String pattern = "\\(\\d{4}\\)";
43             String line = value.toString();
44             Pattern r = Pattern.compile(pattern);
45             Matcher matcher = r.matcher(line);
46             String s = "";
47             if (matcher.find()) {
48                 s = matcher.group(0);
49                 s = s.replaceAll("\\(", "").replaceAll("\\)", "");
50             }
51             if (split.length >= 3) {
52                 Double avg_score = rateMap.getOrDefault(Long.valueOf(split[0]), 0.0);
53                 MovieBean1 movieBean1 = new MovieBean1();
54                 movieBean1.setMovie_avg_rae(avg_score);
55                 movieBean1.setMovie_name(split[1]);
56                 movieBean1.setMovie_year(Integer.valueOf(s));
57                 movieBean1.setMovie_id(Long.valueOf(split[0]));
58                 context.write(movieBean1, NullWritable.get());
59             }
60         }
61     }
62 
63     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
64         Configuration conf = new Configuration();
65         Job job = Job.getInstance(conf);
66         job.setJarByClass(Test01.class);
67         job.setMapperClass(Test01Mapper.class);
68 
69         //指定map输出数据的类型
70         job.setMapOutputKeyClass(MovieBean1.class);
71         job.setMapOutputValueClass(NullWritable.class);
72 
73         //局部优化
74         job.setPartitionerClass(YearPartitioner.class);
75         //分区
76         job.setNumReduceTasks(20);
77 
78         FileInputFormat.setInputPaths(job, new Path("movie的目录"));
79         FileSystem fs = FileSystem.get(conf);
80         Path outPath = new Path("输出目录");
81         if (fs.exists(outPath)) {
82             fs.delete(outPath, true);
83         }
84 
85         FileOutputFormat.setOutputPath(job, outPath);
86         boolean b = job.waitForCompletion(true);
87         System.exit(b ? 0 : 1);
88     }
89 }

 

运行部分结果如下:

 

数据如下:

链接: https://pan.baidu.com/s/1hc84MTWm5xosl4o_LrGoSw 提取码: z59t 

Spark案例----影评分析(年份,电影id,电影名字,平均评分)

posted @ 2019-09-02 18:37  Keep-Smile  阅读(3181)  评论(0编辑  收藏  举报