spark-mllib 密集向量和稀疏向量
spark-mllib 密集向量和稀疏向量
MLlib支持局部向量和矩阵存储在单台服务器,也支持存储于一个或者多个rdd的分布式矩阵 。
局部向量和局部矩阵是用作公共接口的最简单的数据模型。 基本的线性代数运算由Breeze提供。
在监督学习中使用的训练示例在MLlib中称为“标记点”。
因此,向量和 矩阵,标记点是 spark-mllib基本的数据模型,也是学习sparl-mllib的基础。
局部向量
一个局部向量具有存储在单个机器上的integer整数类型的基于0的索引和double类型的多个值。MLlib支持两种类
类型的局部向量:密集(dense)向量和稀疏(sparse)向量。
一个密集向量基于一个double数组来表示其实体值,但是一个稀疏的向量基于两个并列的数组:索引数组和值数组。
例如,一个向量(1.0,0.0,3.0)可以用密集格式表示为[1.0,0.0,3.0] ;
稀疏格式表示为(3,[0,2],[1.0,3.0]),其中3是 向量的大小,向量的索引下标为0,1,2,索引为0的向量元素值为1.0,索引为0的向量元素值为3.0,而索引为1的向量元素值是默认值0.0。
由此可以看出,稀疏的向量初始化的值不包括默认值和不存在的值,可以节省一部分空间,数据集可以变小;而密集向量是把向量中每一个元素的值都初始化了,即是某个索引下标的值不存在,也用默认值代替,这样的好处是清晰明了,但是数据集会比较大。
局部向量的基本实现类是org.apache.spark.mllib.linalg.Vector,spark提供了2中实现:DenseVector and SparseVector。spark官方推荐使用org.apache.spark.mllib.linalg.Vectors类的工厂方法来创建局部向量。
参考 Vector.scala和Vectors.scala的docs文档了解详细的API介绍。
下面我使用spark 的mllib api 就定义一个密集向量:
import org.apache.spark.mllib.linalg.{Vector, Vectors}
// Create a dense vector (1.0, 0.0, 3.0).
//创建密集向量
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
//根据索引数组和值数据组创建稀疏向量
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries.
//直接根据实体创建稀疏向量
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
注意: scala默认引用的scala.collection.immutable.Vector,所以要显示的引用org.apache.spark.mllib.linalg.Vector,确保使用是MLlib的 Vector
作者:
丹江湖畔养蜂子的赵大爹
出处:http://www.cnblogs.com/honeybee/
关于作者:丹江湖畔养蜂子的赵大爹
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接