spark Graph 的PregelAPI 理解和使用

spark Graph 的PregelAPI 理解和使用

图本质上是一种递归的数据结构,可以使用Spark GraphX 的PregelAPI接口对图数据进行批量计算,
之前一直不怎么理解Pregel计算模型,因此花点时间整理一下,该api的理解以及使用方法等。

1、Pregel的计算模型

Pregel接口的官方定义:

  /**
   * Execute a Pregel-like iterative vertex-parallel abstraction.  The
   * user-defined vertex-program `vprog` is executed in parallel on
   * each vertex receiving any inbound messages and computing a new
   * value for the vertex.  The `sendMsg` function is then invoked on
   * all out-edges and is used to compute an optional message to the
   * destination vertex. The `mergeMsg` function is a commutative
   * associative function used to combine messages destined to the
   * same vertex.
   *
   * On the first iteration all vertices receive the `initialMsg` and
   * on subsequent iterations if a vertex does not receive a message
   * then the vertex-program is not invoked.
   *
   * This function iterates until there are no remaining messages, or
   * for `maxIterations` iterations.
   *
   * @param A the Pregel message type
   *
   * @param initialMsg the message each vertex will receive at the on
   * the first iteration
   *
   * @param maxIterations the maximum number of iterations to run for
   *
   * @param activeDirection the direction of edges incident to a vertex that received a message in
   * the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
   * out-edges of vertices that received a message in the previous round will run.
   *
   * @param vprog the user-defined vertex program which runs on each
   * vertex and receives the inbound message and computes a new vertex
   * value.  On the first iteration the vertex program is invoked on
   * all vertices and is passed the default message.  On subsequent
   * iterations the vertex program is only invoked on those vertices
   * that receive messages.
   *
   * @param sendMsg a user supplied function that is applied to out
   * edges of vertices that received messages in the current
   * iteration
   *
   * @param mergeMsg a user supplied function that takes two incoming
   * messages of type A and merges them into a single message of type
   * A.  ''This function must be commutative and associative and
   * ideally the size of A should not increase.''
   *
   * @return the resulting graph at the end of the computation
   *
   */
  def pregel[A: ClassTag](
      initialMsg: A,
      maxIterations: Int = Int.MaxValue,
      activeDirection: EdgeDirection = EdgeDirection.Either)(
      vprog: (VertexId, VD, A) => VD,
      sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
      mergeMsg: (A, A) => A)
    : Graph[VD, ED] = {
    Pregel(graph, initialMsg, maxIterations, activeDirection)(vprog, sendMsg, mergeMsg)
  }

方法的注释根据自己的实验理解如下:

执行类似Pregel的迭代顶点并行抽象。
在一次迭代计算中,图的各个顶点收到默认消息或者上一轮迭代发送的消息后;
首先调用mergeMsg函数将具有相同目的地的消息合并成一个消息;
然后调用vprog顶点函数计算出新的顶点属性值;
然后再调用sendMsg 函数向出边顶点发送下一轮迭代的消息;
迭代计算直到没有消息剩余或者达到最大迭代次数退出。

在首轮迭代的时候,所有的顶点都会接收到initialMsg消息,在次轮迭代的时候,如果顶点没有接收到消息,verteProgram则不会被调用。

这些函数迭代会一直持续到没有剩余消息或者达到最大迭代次数maxIterations

VD : 顶点的属性的数据类型。
ED : 边的属性的数据类型
VertexId : 顶点ID的类型
A : Pregel message的类型。
graph:计算的输入的图
initialMsg : 图的每个顶点在首轮迭代时收到的初始化消息
maxIterations:最大迭代的次数
vprog
vprog是用户定义的顶点程序,会运行在每一个顶点上,该vprog函数的功能是负责接收入站的message,
并计算出的顶点的新属性值。
在首轮迭代时,在所有的顶点上都会调用程序vprog函数,传人默认的defaultMessage;在次轮迭代时,只有接收到message消息的顶点才会调用vprog函数。

      vprog: (VertexId, VD, A) => VD
	  输入参数: 顶点ID ,该顶点对应的顶点属性值,本轮迭代收到的message
      输出结果: 新的顶点属性值
               

sendMsg
用户提供的函数,应用于以当前迭代计算收到消息的顶点为源顶点的边edges;sendMsg函数的功能
是发送消息,消息的发送方向默认是沿着出边反向(向边的目的顶点发送消息)。

sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
输入参数是 EdgeTriplet :当前迭代计算收到消息的顶点为源顶点的边edges的EdgeTriplet对象。
输出结果: 下一迭代的消息。

mergeMsg
用户提供定义的函数,将具有相同目的地的消息合并成一个;如果一个顶点,收到两个以上的A类型的消息message,该函数将他们合并成一个A类型消息。 这个函数必须是可交换的和关联的。理想情况下,A类型的message的size大小不应增加。

mergeMsg: (A, A) => A)

输入参数:当前迭代中,一个顶点收到的2个A类型的message。
输出结果:A类型的消息

下面的例子是使用Pregel计算单源最短路径,在图中节点间查找最短的路径是非常常见的图算法,所谓“单源最短路径”,就是指给定初始节点StartV,
计算图中其他任意节点到该节点的最短距离。我简化了官方的示例,使我们可以更简单的理解pregel计算模型。

package graphxTest

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.graphx.{Edge, Graph, VertexId}

/**
  * Created by Mtime on 2018/1/25.
  */
object GraphxPregelTest {
  val spark = SparkSession
    .builder
    .appName(s"${this.getClass.getSimpleName}").master("local[2]")
    .getOrCreate()
  val sc = spark.sparkContext

  /**
    * 计算最短路径
    **/
  def shortestPath(): Unit = {
    //生成一个图对象
    val graph: Graph[Long, Double] = genGraph
    //打印出图的值
    graph.triplets.foreach(t => {
      println(s"t.srcId=${t.srcId} t.dstId=${t.dstId}  t.srcAttr=${t.srcAttr} t.dstAttr=${t.dstAttr}")
    })

    val sourceId: VertexId = 1 // 计算顶点1到图各个顶点的最短路径
    // Initialize the graph such that all vertices except the root have distance infinity.
    val initialGraph = graph.mapVertices((id, att) =>
        if (id == sourceId) 0.0 else Double.PositiveInfinity)

    println("------------------------------")
    //打印出图的值
    initialGraph.triplets.foreach(t => {
      println(s"t.srcId=${t.srcId} t.dstId=${t.dstId}  t.srcAttr=${t.srcAttr} t.dstAttr=${t.dstAttr}")
    })

    val sssp:Graph[Double,Double] = initialGraph.pregel(Double.PositiveInfinity)(
      (vid, vidAttr, message) => math.min(vidAttr, message), // Vertex Program
      triplet => {
        // Send Message
        if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
          Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
        } else {
          Iterator.empty
        }
      },
      (message_a, message_b) => math.min(message_a, message_b) // Merge Message
    )
    println("------------------------------")
    //打印出计算结果
    println(sssp.vertices.collect.mkString("\n"))
  }

  /**
    * 初始化图对象
    *
    * @return
    */
  private def genGraph(): Graph[Long, Double] = {
    val vertices: RDD[(VertexId, Long)] =
      sc.parallelize(Array(
        (1L, 0L),
        (2L, 0L),
        (3L, 0L),
        (4L, 0L),
        (5L, 0L),
        (6L, 0L))
      )
    // Create an RDD for edges
    val edges: RDD[Edge[Double]] =
      sc.parallelize(Array(
        Edge(1L, 2L, 1.0),
        Edge(1L, 4L, 1.0),
        Edge(1L, 5L, 1.0),
        Edge(2L, 3L, 1.0),
        Edge(4L, 3L, 1.0),
        Edge(5L, 4L, 1.0),
        Edge(3L, 6L, 1.0)
      )
      )
    val graph: Graph[Long, Double] = Graph(vertices, edges, 0)
    graph
  }

  def main(args: Array[String]) {
    shortestPath
  }
}

posted @ 2018-02-06 14:48  丹江湖畔养蜂子赵大爹  阅读(1440)  评论(0编辑  收藏  举报