HDU 1024

Max Sum Plus Plus

 

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 

 

Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
 
Sample Output
6
8
 
Hint
Huge input, scanf and dynamic programming is recommended.
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int MAXN=1e6+5,INF=0x3f3f3f3f;
int a[MAXN],dp[MAXN],maxv[MAXN];
int main()
{
    int m,n;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),dp[i]=maxv[i]=-INF;
        dp[0]=0;
        int ans=-INF;
        for(int i=1;i<=n;i++)
        {
            for(int j=min(m,i);j>=1;j--)
            {
                dp[j]=max(dp[j]+a[i],maxv[j-1]+a[i]);
                maxv[j]=max(maxv[j],dp[j]);
            }
            ans=max(ans,dp[m]);
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

posted on 2017-04-13 13:54    阅读(186)  评论(0编辑  收藏  举报

导航