HDU 1394 Minimum Inversion Number
Minimum Inversion Number
Problem Description
The
inversion number of a given number sequence a1, a2, ..., an is the
number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The
input consists of a number of test cases. Each case consists of two
lines: the first line contains a positive integer n (n <= 5000); the
next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 6 struct segtree 7 { 8 int l,r; 9 int num; 10 int mid() 11 { 12 return (l+r)>>1; 13 } 14 }; 15 16 segtree tree[5005<<2]; 17 int a[5005<<2]; 18 19 void PushUp(int rt) 20 { 21 tree[rt].num=tree[rt<<1].num+tree[rt<<1|1].num; 22 } 23 24 void build(int l,int r,int rt) 25 { 26 tree[rt].l=l; 27 tree[rt].r=r; 28 tree[rt].num=0; 29 if(l==r)return; 30 int m=tree[rt].mid(); 31 build(l,m,rt<<1); 32 build(m+1,r,rt<<1|1); 33 } 34 35 int query(int l,int r,int rt) 36 { 37 if(tree[rt].l==l&&tree[rt].r==r) 38 return tree[rt].num; 39 int m=tree[rt].mid(); 40 if(r<=m) 41 return query(l,r,rt<<1); 42 else if(l>m) 43 return query(l,r,rt<<1|1); 44 else 45 return query(l,m,rt<<1)+query(m+1,r,rt<<1|1); 46 } 47 48 void update(int pos,int rt) 49 { 50 if(tree[rt].l==tree[rt].r) 51 { 52 tree[rt].num++; 53 return; 54 } 55 int m=tree[rt].mid(); 56 if(pos<=m)update(pos,rt<<1); 57 else update(pos,rt<<1|1); 58 PushUp(rt); 59 } 60 61 int main() 62 { 63 int n,i,j; 64 while(scanf("%d",&n)!=EOF) 65 { 66 for(i=0;i<n;i++) 67 scanf("%d",&a[i]); 68 build(0,n-1,1); 69 int sum=0; 70 for(i=0;i<n;i++) 71 { 72 sum+=query(a[i],n-1,1); 73 update(a[i],1); 74 } 75 int ans=999999999; 76 ans=min(ans,sum); 77 for(i=0;i<n;i++) 78 { 79 sum=sum-a[i]+n-1-a[i]; 80 ans=min(ans,sum); 81 } 82 printf("%d\n",ans); 83 } 84 return 0; 85 }