HDU-4370 0 or 1( 最短路 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370
Problem Description
Given a n*n matrix Cij (1<=i,j<=n),We want to find a n*n matrix Xij (1<=i,j<=n),which is 0 or 1.
Besides,Xij meets the following conditions:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
For example, if n=4,we can get the following equality:
X12+X13+X14=1
X14+X24+X34=1
X12+X22+X32+X42=X21+X22+X23+X24
X13+X23+X33+X43=X31+X32+X33+X34
Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.
For sample, X12=X24=1,all other Xij is 0.
Besides,Xij meets the following conditions:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
For example, if n=4,we can get the following equality:
X12+X13+X14=1
X14+X24+X34=1
X12+X22+X32+X42=X21+X22+X23+X24
X13+X23+X33+X43=X31+X32+X33+X34
Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.
Hint
For sample, X12=X24=1,all other Xij is 0.
Input
The input consists of multiple test cases (less than 35 case).
For each test case ,the first line contains one integer n (1<n<=300).
The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).
For each test case ,the first line contains one integer n (1<n<=300).
The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).
Output
For each case, output the minimum of ∑Cij*Xij you can get.
Sample Input
4
1 2 4 10
2 0 1 1
2 2 0 5
6 3 1 2
Sample Output
3
转换思维的一道题,虽然是在最短路的专题里看见的,但是一开始真想不到是最短路,还以为是一个求min( c[1][n], c[1][k] + c[k][n] )( 1 < k < n )的水题,不过认真看完题解发现转换思维之后确实是一道水题,难就难在转换思维
理解条件之前先转换一下思维,将矩阵C看做描述N个点花费的邻接矩阵
再来看三个条件:
条件一:表示1号点出度为1
条件二:表示n号点入度为1
条件三:表示k( 1 < k < n )号点出度等于入度
最后再来看看题目要求,∑Cij*Xij(1<=i,j<=n),很明显,这是某个路径的花费,而路径的含义可以有以下两种:
一:1号点到n号点的花费
二:1号点经过其它点成环,n号点经过其它点成环,这两个环的花费之和
于是,就变成了一道简单的最短路问题
关于环花费的算法,可以改进spfa算法,初始化dis[start] = INF,且一开始让源点之外的点入队
代码如下
1 #include<iostream> 2 #include<cstring> 3 #include<cmath> 4 #include<algorithm> 5 #include<map> 6 #include<cstdio> 7 #include<queue> 8 #include<stack> 9 10 using namespace std; 11 12 const int INF = 0x3f3f3f3f; 13 14 int cost[305][305]; 15 int dis[305]; 16 int n; 17 bool vis[305]; 18 19 void spfa( int start ){ 20 stack<int> Q; 21 22 for( int i = 1; i <= n; i++ ){ 23 dis[i] = cost[start][i]; 24 if( i != start ){ 25 Q.push( i ); 26 vis[i] = true; 27 } 28 else{ 29 vis[i] = false; 30 } 31 } 32 dis[start] = INF; 33 34 while( !Q.empty() ){ 35 int x = Q.top(); Q.pop(); vis[x] = false; 36 37 for( int y = 1; y <= n; y++ ){ 38 if( x == y ) continue; 39 if( dis[x] + cost[x][y] < dis[y] ){ 40 dis[y] = dis[x] + cost[x][y]; 41 if( !vis[y] ){ 42 vis[y] = true; 43 Q.push( y ); 44 } 45 } 46 } 47 } 48 } 49 50 int main(){ 51 ios::sync_with_stdio( false ); 52 53 while( cin >> n ){ 54 for( int i = 1; i <= n; i++ ){ 55 for( int j = 1; j <= n; j++ ){ 56 cin >> cost[i][j]; 57 } 58 } 59 60 int ans, c1, cn; 61 spfa( 1 ); 62 ans = dis[n]; 63 c1 = dis[1]; 64 spfa( n ); 65 cn = dis[n]; 66 67 68 cout << min( ans, c1 + cn ) << endl; 69 } 70 71 return 0; 72 }
将矩阵C看做描述N个点花费的邻接矩阵