SQL查询用户连续登录天数

一、连续3天登录用户

1.1建表

create table user_login(

    user_id int,

    login_time datetime,

)

1.2数据插入

insert into user_login values (1,'2022-06-01 11:00:00.000');

insert into user_login values (1,'2022-06-01 12:00:00.000');

insert into user_login values (1,'2022-06-01 12:00:00.000');

insert into user_login values (1,'2022-06-02 11:00:00.000');

insert into user_login values (1,'2022-06-03 11:00:00.000');

insert into user_login values (2,'2022-06-01 11:00:00.000');

insert into user_login values (2,'2022-06-02 11:00:00.000');

insert into user_login values (2,'2022-06-04 11:00:00.000');

insert into user_login values (3,'2022-06-01 11:00:00.000');

insert into user_login values (3,'2022-06-02 11:00:00.000');

insert into user_login values (3,'2022-06-04 11:00:00.000');

insert into user_login values (3,'2022-06-05 11:00:00.000');

insert into user_login values (3,'2022-06-06 11:00:00.000');

insert into user_login values (3,'2022-06-07 11:00:00.000');

insert into user_login values (3,'2022-06-08 11:00:00.000');

1.3SQL查询

SQL主要逻辑:

(1)通过开窗函数对日期进行每个用户的登录日期排序

Select user_id

       ,convert(varchar(100),login_time,23) as login_date

       ,row_number() over(partition by user_id order by convert(varchar(100),login_time,23)) as rn

  From user_login;

(2)将登录日期和排序序号相减得到相同连续日期

Select user_id

       ,login_date

       ,datediff(day,login_date,rn) as interval_days

  From (Select user_id

               ,convert(varchar(100),login_time,23) as login_date

               ,row_number() over(partition by user_id order by convert(varchar(100),login_time,23)) as rn

          From user_login

       );

(3)按照得到的相同连续日期分组,count大于3的为连续登录超过3天的。

select B.user_id

  from(Select user_id

              ,login_date

              ,datediff(day,login_date,rn) as interval_days

         From (Select user_id

                      ,convert(varchar(100),login_time,23) as login_date

                      ,row_number() over(partition by user_id order by convert(varchar(100),login_time,23)) as rn

                 From user_login

              )A

      )B

group by B.user_id

         ,B.inteval_days

having count(1) >= 3;

二、连续3天登录,中间间隔一/N天用户也算

建表及数据插入参考1.1,1.2。

2.1获取上次登录日期

    用上一次登陆日期,与此次的登陆日期对比,可以判断是否符合小于等于2天的条件。

此处使用lag窗口函数,开窗查询前一行数据,注意每个用户的第一条登陆信息上一天为null,这里给1970-01-01,防止空指针异常。

select user_id

       ,login_date

       ,lag(login_date,1,'1970-01-01') over(partition by user_id order by login_date) as last_login_date

  from test_login; t1

 

查询结果:

user_id   login_date     last_login_date

1001       2021/11/5      1970/1/1

1001       2021/11/6      2021/11/5

1001       2021/11/8      2021/11/6

1001       2021/11/10    2021/11/8

1001       2021/11/15    2021/11/10

1001       2021/11/16    2021/11/15

1001       2021/11/18    2021/11/16

1001       2021/11/19    2021/11/18

1002       2021/11/5      1970/1/1

1002       2021/11/7      2021/11/5

1002       2021/11/9      2021/11/7

1002       2021/11/11    2021/11/9

1002       2021/11/13    2021/11/11

1002       2021/11/16    2021/11/13

2.2获取相邻登录日期差值

将当前行数据的登录日期减去上一行数据的登录日期。

select user_id

       ,login_date

       ,datediff(login_date,last_login_date) as date_diff

  from t1; t2

 

查询结果:

user_id login_date date_diff

1001 2021-11-05 18936

1001 2021-11-06 1

1001 2021-11-08 2

1001 2021-11-10 2

1001 2021-11-15 5

1001 2021-11-16 1

1001 2021-11-18 2

1001 2021-11-19 1

1002 2021-11-05 18936

1002 2021-11-07 2

1002 2021-11-09 2

1002 2021-11-11 2

1002 2021-11-13 2

1002 2021-11-16 3

2.3划分连续登录组

   相邻两次登录日期差值小于等于2的数据为一个连续登录组,每遇到相邻两次登录日期差值大于2的数据,分组编号+1,更换连续登录组。

select user_id

       ,login_date

       ,sum(if(date_diff>2,1,0)) over(partition by user_id order by login_date rows between unboundedpreceding and current row) as group_id

  from t2; t3

 

查询结果:

user_id login_date group_id

1001 2021-11-05 1

1001 2021-11-06 1

1001 2021-11-08 1

1001 2021-11-10 1

1001 2021-11-15 2

1001 2021-11-16 2

1001 2021-11-18 2

1001 2021-11-19 2

1002 2021-11-05 1

1002 2021-11-07 1

1002 2021-11-09 1

1002 2021-11-11 1

1002 2021-11-13 1

1002 2021-11-16 2

2.4计算连续登录天数

每个连续登录日期组中,最大日期-最小日期差值+1 即为连续登录天数。

select user_id

       ,group_id

       ,(datediff(max(login_date),min(login_date))+1) as continuous_login_days

  from t3

 group by user_id

       ,group_id; t4

 

查询结果:

user_id group_id continuous_login_days

1001 1         6

1001 2         5

1002 1         9

1002 2         1

2.5计算每用户最大登录天数

按用户取最大连续登录天数。

select user_id

       ,max(continuous_login_days) as max_continuous_login_days

  from t4

 group by user_id;

 

查询结果:

user_id max_continuous_login_days

1001 6

1002 9

2.6最终代码测试

select

    user_id,

    max(continuous_login_days) max_continuous_login_days

from

    (

        select

            user_id,

            group_id,

            (datediff(max(login_date), min(login_date)) + 1) continuous_login_days

        from

            (

                select

                    user_id,

                    login_date,

                    sum(if(date_diff > 2, 1, 0))

                        over (partition by user_id order by login_date rows between unbounded preceding and current row) group_id

                from

                    (

                        select

                            user_id,

                            login_date,

                            datediff(login_date, last_login_date) date_diff

                        from

                            (select

                                 user_id,

                                 login_date,

                                 lag(login_date, 1, '1970-01-01')

                                     over (partition by user_id order by login_date) last_login_date

                             from

                                 test_login) t1) t2) t3

        group by user_id, group_id) t4

group by user_id;

三、查询用户最大连续登录天数

3.1插入数据

样例数据如下 login_log:

user_id   login_time

1     2022-11-28

1     2022-12-01

1     2022-12-02

1     2022-12-03

2     2022-12-01

2     2022-12-04

3.2开窗函数,对登录时间进行分组排序

select user_id

, login_time

,row_number() over(partition by user_id order by login_time) as num

from login_log;

 

查询结果:

user_id   login_time     num

1     2022-11-28   1

1     2022-12-01   2

1     2022-12-02   3

1     2022-12-03   4

2     2022-12-01   1

2     2022-12-04   2

3.3利用等差数列的特性,将登录日期和排序序号相减得到相同连续日期

select t.user_id

       ,t.login_time

       ,date_sub(login_time, INTERVAL t.num DAY) as date_rslt

  from (select user_id

               ,login_time

               ,row_number() over(partition by user_id order by login_time) num

          from login_log

       ) t;

注:INTERVAL 关键字可以用于计算时间间隔, date_sub(login_time, INTERVAL t.num DAY)表示登录时间减去 num 天;若 DAY 改成 HOUR 表示减去 num 小时。

 

查询结果:

user_id   login_time     date_rslt

1     2022-11-28   2022-11-27

1     2022-12-01   2022-11-29

1     2022-12-02   2022-11-29

1     2022-12-03   2022-11-29

2     2022-12-01   2022-11-30

2     2022-12-04   2022-12-02

3.4分组获取用户连续登录天数

select a.user_id

       ,a.date_rslt

       ,count(1) as cnt

  from (select t.user_id

               ,t.login_time

               ,date_sub(login_time, INTERVAL t.num DAY) as date_rslt

          from (select user_id

                       ,login_time

                       ,row_number() over(partition by user_id order by login_time) as num

                  from login_log

               ) t

        ) a

  group by a.user_id

           ,a.date_rslt;

 

查询结果:

1 2022-11-27 1

1 2022-11-29 3

1 2022-11-30 1

2 2022-12-02 1

3.5计算每个用户最大登录天数

select user_id

       ,max(cnt) as max

  from (select a.user_id

               ,a.date_rslt

               ,count(1) as cnt

          from (select t.user_id

                       ,t.login_time

                       ,date_sub(login_time, INTERVAL t.num DAY) as date_rslt

                  from (select user_id

                               ,login_time

                               ,row_number() over(partition by user_id order by login_time) as num

                          from login_log

                        ) t

               ) a

         group by a.user_id

               ,a.date_rslt

         )M

   group by user_id;

 

查询结果

1 3

2 1

posted on 2023-08-10 10:42  一只小白two  阅读(4512)  评论(0编辑  收藏  举报