sklearn中的朴素贝叶斯模型及其应用
1.使用朴素贝叶斯模型对iris数据集进行花分类
尝试使用3种不同类型的朴素贝叶斯:
高斯分布型
多项式型
伯努利型
2.使用sklearn.model_selection.cross_val_score(),对模型进行验证
from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB #高斯 gnb = GaussianNB() #构造 pre = gnb.fit(iris.data,iris.target) #拟合 y_pre = gnb.predict(iris.data) #预测 print(iris.data.shape[0],(iris.target != y_pre).sum()) scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #评估 print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import BernoulliNB #伯努利 bnb = BernoulliNB() pre = bnb.fit(iris.data,iris.target) y_pre = bnb.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pre).sum()) scores = cross_val_score(bnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import MultinomialNB #多项式 mnb = MultinomialNB() pre = mnb.fit(iris.data,iris.target) y_pre = mnb.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pre).sum()) scores = cross_val_score(mnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean())
3. 垃圾邮件分类
数据准备:
- 用csv读取邮件数据,分解出邮件类别及邮件内容。
import csv file_path = r"C:/Users/Administrator/Desktop/SMSSpamCollectionjsn.txt" sms = open(file_path,'r',encoding = 'utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data sms_label
- 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等
import nltk
nltk.download()
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatiser
训练集和测试集数据划分
- from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label) x_train x_test