策略模式(下):如何实现一个支持给不同大小文件排序的小程序?
上一节课,我们主要介绍了策略模式的原理和实现,以及如何利用策略模式来移除 if-else 或者 switch-case 分支判断逻辑。今天,我们结合“给文件排序”这样一个具体的例子,来详细讲一讲策略模式的设计意图和应用场景。
通过今天的学习,你会发现,设计原则和思想其实比设计模式更加普适和重要,掌握了代码的设计原则和思想,我们甚至可以自己创造出来新的设计模式。
问题与解决思路
假设有这样一个需求,希望写一个小程序,实现对一个文件进行排序的功能。文件中只包含整型数,并且,相邻的数字通过逗号来区隔。如果由你来编写这样一个小程序,你会如何来实现呢?你可以把它当作面试题,先自己思考一下,再来看我下面的讲解。
你可能会说,这不是很简单嘛,只需要将文件中的内容读取出来,并且通过逗号分割成一个一个的数字,放到内存数组中,然后编写某种排序算法(比如快排),或者直接使用编程语言提供的排序函数,对数组进行排序,最后再将数组中的数据写入文件就可以了。
但是,如果文件很大呢?比如有 10GB 大小,因为内存有限(比如只有 8GB 大小),我们没办法一次性加载文件中的所有数据到内存中,这个时候,我们就要利用外部排序算法(具体怎么做,可以参看我的另一个专栏《数据结构与算法之美》中的“排序”相关章节)了。
如果文件更大,比如有 100GB 大小,我们为了利用 CPU 多核的优势,可以在外部排序的基础之上进行优化,加入多线程并发排序的功能,这就有点类似“单机版”的 MapReduce。
果文件非常大,比如有 1TB 大小,即便是单机多线程排序,这也算很慢了。这个时候,我们可以使用真正的 MapReduce 框架,利用多机的处理能力,提高排序的效率。
代码实现与分析
解决思路讲完了,不难理解。接下来,我们看一下,如何将解决思路翻译成代码实现。
我先用最简单直接的方式将它实现出来。具体代码我贴在下面了,你可以先看一下。因为我们是在讲设计模式,不是讲算法,所以,在下面的代码实现中,我只给出了跟设计模式相关的骨架代码,并没有给出每种排序算法的具体代码实现。感兴趣的话,你可以自行实现一下。
public class Sorter {
private static final long GB = 1000 * 1000 * 1000;
public void sortFile(String filePath) {
// 省略校验逻辑
File file = new File(filePath);
long fileSize = file.length();
if (fileSize < 6 * GB) { // [0, 6GB)
quickSort(filePath);
} else if (fileSize < 10 * GB) { // [6GB, 10GB)
externalSort(filePath);
} else if (fileSize < 100 * GB) { // [10GB, 100GB)
concurrentExternalSort(filePath);
} else { // [100GB, ~)
mapreduceSort(filePath);
}
}
private void quickSort(String filePath) {
// 快速排序
}
private void externalSort(String filePath) {
// 外部排序
}
private void concurrentExternalSort(String filePath) {
// 多线程外部排序
}
private void mapreduceSort(String filePath) {
// 利用MapReduce多机排序
}
}
public class SortingTool {
public static void main(String[] args) {
Sorter sorter = new Sorter();
sorter.sortFile(args[0]);
}
}
在“编码规范”那一部分我们讲过,函数的行数不能过多,最好不要超过一屏的大小。所以,为了避免 sortFile() 函数过长,我们把每种排序算法从 sortFile() 函数中抽离出来,拆分成 4 个独立的排序函数。
如果只是开发一个简单的工具,那上面的代码实现就足够了。毕竟,代码不多,后续修改、扩展的需求也不多,怎么写都不会导致代码不可维护。但是,如果我们是在开发一个大型项目,排序文件只是其中的一个功能模块,那我们就要在代码设计、代码质量上下点儿功夫了。只有每个小的功能模块都写好,整个项目的代码才能不差。
在刚刚的代码中,我们并没有给出每种排序算法的代码实现。实际上,如果自己实现一下的话,你会发现,每种排序算法的实现逻辑都比较复杂,代码行数都比较多。所有排序算法的代码实现都堆在 Sorter 一个类中,这就会导致这个类的代码很多。而在“编码规范”那一部分中,我们也讲到,一个类的代码太多也会影响到可读性、可维护性。除此之外,所有的排序算法都设计成 Sorter 的私有函数,也会影响代码的可复用性。
代码优化与重构
只要掌握了我们之前讲过的设计原则和思想,针对上面的问题,即便我们想不到该用什么设计模式来重构,也应该能知道该如何解决,那就是将 Sorter 类中的某些代码拆分出来,独立成职责更加单一的小类。实际上,拆分是应对类或者函数代码过多、应对代码复杂性的一个常用手段。按照这个解决思路,我们对代码进行重构。重构之后的代码如下所示:
public interface ISortAlg {
void sort(String filePath);
}
public class QuickSort implements ISortAlg {
@Override
public void sort(String filePath) {
//...
}
}
public class ExternalSort implements ISortAlg {
@Override
public void sort(String filePath) {
//...
}
}
public class ConcurrentExternalSort implements ISortAlg {
@Override
public void sort(String filePath) {
//...
}
}
public class MapReduceSort implements ISortAlg {
@Override
public void sort(String filePath) {
//...
}
}
public class Sorter {
private static final long GB = 1000 * 1000 * 1000;
public void sortFile(String filePath) {
// 省略校验逻辑
File file = new File(filePath);
long fileSize = file.length();
ISortAlg sortAlg;
if (fileSize < 6 * GB) { // [0, 6GB)
sortAlg = new QuickSort();
} else if (fileSize < 10 * GB) { // [6GB, 10GB)
sortAlg = new ExternalSort();
} else if (fileSize < 100 * GB) { // [10GB, 100GB)
sortAlg = new ConcurrentExternalSort();
} else { // [100GB, ~)
sortAlg = new MapReduceSort();
}
sortAlg.sort(filePath);
}
}
经过拆分之后,每个类的代码都不会太多,每个类的逻辑都不会太复杂,代码的可读性、可维护性提高了。除此之外,我们将排序算法设计成独立的类,跟具体的业务逻辑(代码中的 if-else 那部分逻辑)解耦,也让排序算法能够复用。这一步实际上就是策略模式的第一步,也就是将策略的定义分离出来。
实际上,上面的代码还可以继续优化。每种排序类都是无状态的,我们没必要在每次使用的时候,都重新创建一个新的对象。所以,我们可以使用工厂模式对对象的创建进行封装。按照这个思路,我们对代码进行重构。重构之后的代码如下所示:
public class SortAlgFactory {
private static final Map<String, ISortAlg> algs = new HashMap<>();
static {
algs.put("QuickSort", new QuickSort());
algs.put("ExternalSort", new ExternalSort());
algs.put("ConcurrentExternalSort", new ConcurrentExternalSort());
algs.put("MapReduceSort", new MapReduceSort());
}
public static ISortAlg getSortAlg(String type) {
if (type == null || type.isEmpty()) {
throw new IllegalArgumentException("type should not be empty.");
}
return algs.get(type);
}
}
public class Sorter {
private static final long GB = 1000 * 1000 * 1000;
public void sortFile(String filePath) {
// 省略校验逻辑
File file = new File(filePath);
long fileSize = file.length();
ISortAlg sortAlg;
if (fileSize < 6 * GB) { // [0, 6GB)
sortAlg = SortAlgFactory.getSortAlg("QuickSort");
} else if (fileSize < 10 * GB) { // [6GB, 10GB)
sortAlg = SortAlgFactory.getSortAlg("ExternalSort");
} else if (fileSize < 100 * GB) { // [10GB, 100GB)
sortAlg = SortAlgFactory.getSortAlg("ConcurrentExternalSort");
} else { // [100GB, ~)
sortAlg = SortAlgFactory.getSortAlg("MapReduceSort");
}
sortAlg.sort(filePath);
}
}
经过上面两次重构之后,现在的代码实际上已经符合策略模式的代码结构了。我们通过策略模式将策略的定义、创建、使用解耦,让每一部分都不至于太复杂。不过,Sorter 类中的 sortFile() 函数还是有一堆 if-else 逻辑。这里的 if-else 逻辑分支不多、也不复杂,这样写完全没问题。但如果你特别想将 if-else 分支判断移除掉,那也是有办法的。我直接给出代码,你一看就能明白。实际上,这也是基于查表法来解决的,其中的“algs”就是“表”。
public class Sorter {
private static final long GB = 1000 * 1000 * 1000;
private static final List<AlgRange> algs = new ArrayList<>();
static {
algs.add(new AlgRange(0, 6*GB, SortAlgFactory.getSortAlg("QuickSort")));
algs.add(new AlgRange(6*GB, 10*GB, SortAlgFactory.getSortAlg("ExternalSort")));
algs.add(new AlgRange(10*GB, 100*GB, SortAlgFactory.getSortAlg("ConcurrentExternalSort")));
algs.add(new AlgRange(100*GB, Long.MAX_VALUE, SortAlgFactory.getSortAlg("MapReduceSort")));
}
public void sortFile(String filePath) {
// 省略校验逻辑
File file = new File(filePath);
long fileSize = file.length();
ISortAlg sortAlg = null;
for (AlgRange algRange : algs) {
if (algRange.inRange(fileSize)) {
sortAlg = algRange.getAlg();
break;
}
}
sortAlg.sort(filePath);
}
private static class AlgRange {
private long start;
private long end;
private ISortAlg alg;
public AlgRange(long start, long end, ISortAlg alg) {
this.start = start;
this.end = end;
this.alg = alg;
}
public ISortAlg getAlg() {
return alg;
}
public boolean inRange(long size) {
return size >= start && size < end;
}
}
}
现在的代码实现就更加优美了。我们把可变的部分隔离到了策略工厂类和 Sorter 类中的静态代码段中。当要添加一个新的排序算法时,我们只需要修改策略工厂类和 Sort 类中的静态代码段,其他代码都不需要修改,这样就将代码改动最小化、集中化了。
你可能会说,即便这样,当我们添加新的排序算法的时候,还是需要修改代码,并不完全符合开闭原则。有什么办法让我们完全满足开闭原则呢?
对于 Java 语言来说,我们可以通过反射来避免对策略工厂类的修改。具体是这么做的:我们通过一个配置文件或者自定义的 annotation 来标注都有哪些策略类;策略工厂类读取配置文件或者搜索被 annotation 标注的策略类,然后通过反射动态地加载这些策略类、创建策略对象;当我们新添加一个策略的时候,只需要将这个新添加的策略类添加到配置文件或者用 annotation 标注即可。
对于 Sorter 来说,我们可以通过同样的方法来避免修改。我们通过将文件大小区间和算法之间的对应关系放到配置文件中。当添加新的排序算法时,我们只需要改动配置文件即可,不需要改动代码。