spark的做算子统计的Java代码(在Linux系统集群式运行)
这篇跟上面一篇java代码部分基本相同,直接上代码
package com.spark.study.core;
import java.util.Arrays;
import java.util.Iterator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* 将java开发的wordcount程序部署到spark集群上运行
* @author Administrator
*
*/
public class WordCountCluster {
public static void main(String[] args) {
// 如果要在spark集群上运行,需要修改的,只有两个地方
// 第一,将SparkConf的setMaster()方法给删掉,默认它自己会去连接
// 第二,我们针对的不是本地文件了,修改为hadoop hdfs上的真正的存储大数据的文件
// 实际执行步骤:
// 1、将spark.txt文件上传到hdfs上去
// 2、使用我们最早在pom.xml里配置的maven插件,对spark工程进行打包
// 3、将打包后的spark工程jar包,上传到机器上执行
// 4、编写spark-submit脚本
// 5、执行spark-submit脚本,提交spark应用到集群执行
SparkConf conf = new SparkConf()
.setAppName("WordCountCluster");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> lines = sc.textFile("hdfs://node1:9000/spark.txt");
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Iterator<String> call(String line) throws Exception {
return Arrays.asList(line.split(" ")).iterator();
}
});
JavaPairRDD<String, Integer> pairs = words.mapToPair(
new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(
new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
wordCounts.foreach(new VoidFunction<Tuple2<String,Integer>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Integer> wordCount) throws Exception {
System.out.println(wordCount._1 + " appeared " + wordCount._2 + " times.");
}
});
sc.close();
}
}
按上面步骤操作,配置即可