UVa 580 - Critical Mass(递推)

链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=521

 

题意:

有一些装有铀(用U表示)和铅(用L表示)的盒子,数量均足够多。
要求把n(n≤30)个盒子放成一行,但至少有3个U放在一起,有多少种放法?
例如,n=4, 5时答案分别为3, 8。

 

分析:

设答案为f(n)。既然有3个U放在一起,可以根据“最左边的3个U”的位置分类。假定是i、i+1和i+2这3个盒子,
则前i-1个盒子不能有3个U放在一起的情况。设n个盒子“没有3个U放在一起”的方案数为g(n)=2^n-f(n),
则前i-1个盒子的方案有g(i-1)种。后面的n-i-2个盒子可以随便选择,有2^(n-i-2)种。
但是,即使前i-1个盒子内部不出现3个U,仍然可能和i、i+1和i+2组成3个U。
所以强制让第i-1个盒子(如果存在)放L,则前i-2个盒子内部不能出现连续的3个U。
因此f(n)=2^(n-3) + sum( g(i-2) * 2^(n-i-2) ), 2≤i≤n-2。
边界是f(0)=f(1)=f(2)=0。g(0)=1,g(1)=2,g(2)=4。注意上式中的2^(n-3)对应于i=1的情况。

 

代码:

 1 import java.io.*;
 2 import java.util.*;
 3 
 4 public class Main {
 5     static final int UP = 30 + 5;
 6     static int f[] = new int[UP], g[] = new int[UP];
 7     
 8     static void constant() {
 9         f[0] = 0;  f[1] = 0;  f[2] = 0;  f[3] = 1;
10         g[0] = 1;  g[1] = 2;  g[2] = 4;  g[3] = 7;
11         for(int n = 4; n <= 30; n++) {
12             f[n] = 1 << (n-3);
13             for(int i = 2; i <= n-2; i++) f[n] += g[i-2] * (1 << (n-i-2));
14             g[n] = (1 << n) - f[n];
15         }
16     }
17     
18     public static void main(String args[]) {
19         Scanner cin = new Scanner(new BufferedInputStream(System.in));
20         constant();
21         
22         while(true) {
23             int n = cin.nextInt();
24             if(n == 0) break;
25             System.out.println(f[n]);
26         }
27         cin.close();
28     }
29 }

 

posted @ 2018-04-28 23:04  Ctfes  阅读(191)  评论(0编辑  收藏  举报