[USACO08JAN] Cow Contest
题目背景
[Usaco2008 Jan]
题目描述
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1..N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。
输入输出格式
输入格式:
第1行: 2个用空格隔开的整数:N 和 M
第2..M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为 胜者)
输出格式:
第1行: 输出1个整数,表示排名可以确定的奶牛的数目
输入输出样例
说明
输出说明:
编号为2的奶牛输给了编号为1、3、4的奶牛,也就是说她的水平比这3头奶
牛都差。而编号为5的奶牛又输在了她的手下,也就是说,她的水平比编号为5的
奶牛强一些。于是,编号为2的奶牛的排名必然为第4,编号为5的奶牛的水平必
然最差。其他3头奶牛的排名仍无法确定。
显然用Floyed传递闭包
code:
1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<iostream> 5 #include<algorithm> 6 7 using namespace std; 8 9 const int N = 110; 10 11 int n, m, ans, vs[N][N]; 12 13 inline int read() { 14 int num = 0, f = 1; 15 char ch = getchar(); 16 while (!isdigit(ch)) { 17 if (ch == '-') f = -1; 18 ch = getchar(); 19 } 20 while (isdigit(ch)) { 21 num = num * 10 + ch - '0'; 22 ch = getchar(); 23 } 24 return num * f; 25 } 26 27 int main() { 28 memset(vs, 0, sizeof(vs)); 29 30 n = read(); m = read(); 31 for (int i = 1; i <= m; i++) { 32 int a, b; 33 a = read(); b = read(); 34 vs[a][b] = 1; 35 } 36 37 //Floyed传递闭包 38 for (int k = 1; k <= n; k++) 39 for (int i = 1; i <= n; i++) 40 for (int j = 1; j <= n; j++) 41 vs[i][j] |= (vs[i][k] & vs[k][j]); 42 //表示i能否走到j,即要么一开始i能到j,要么i能到k,k再能到j。 43 44 for (int i = 1; i <= n; i++) { 45 int temp = 0; 46 47 for (int j = 1; j <= n; j++) 48 if (vs[i][j] || vs[j][i]) temp++; 49 50 if (temp == n - 1) ans++; 51 //如果被打败和打败的总数为n-1,即被其他所有牛访问过或间接访问过,那么它一定是可以确定的 52 } 53 54 printf("%d", ans); 55 56 return 0; 57 }