ELK采集之nginx 之高德地图出城市IP分布图

1、采用拓扑:

wKioL1h3EzSSua9CAAArIrLMEjE551.png

 

角色扮演: 

Agent:采用logstash,IP:192.168.10.7

Redis队列: IP:192.168.10.100

Indexer:logstash,IP:192.168.10.205

Es+kibana:放在192.168.10.100(大的日志环境可以单独存放)

 

说明:下面是一台日志服务器下面nginx的日志格式

 

log_format backend  '$http_x_forwarded_for [$time_local] '

                '"$host" "$request" $status $body_bytes_sent '

                '"$http_referer" "$http_user_agent"'

 

1、192.168.10.7上面agnet的配置:

 

[luohui@BJ-huasuan-h-web-07 ~]$ cat /home/luohui/logstash-5.0.0/etc/logstash-nginx.conf

input {

    file {

        path => ["/home/data/logs/access.log"]

        type => "nginx_access"

    }

}

output {

if [type] == "nginx_access"{

   redis {

    host => ["192.168.10.100:6379"]

    data_type =>"list"

    key => "nginx"

    }

  }

}

   

##说明:这里的agent只是做日志发送,对性能影响不大,读取access.log日志文件,并且发送到远端redis。

 

2、192.168.10.205:indexer的配置:

[root@mail etc]# cat logstash_nginx.conf

input {

  redis {

    host => "192.168.10.100"

    port => 6379

    data_type => "list"

    key => "nginx"

  }

}

 

filter {

        grok {

                match =>

                     {"message" => "%{IPORHOST:clientip} \[%{HTTPDATE:timestamp}\] %{NOTSPACE:http_name} \"(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})\" %{NUMBER:response} (?:%{NUMBER:bytes:float}|-) %{QS:referrer} %{QS:agent}"

            }

        }

    date {

        match => [ "timestamp" , "dd/MMM/YYYY:HH:mm:ss Z" ]

    }

    geoip {

        source => "clientip"

        target => "geoip"

        database => "/test/logstash-5.0.0/GeoLite2-City.mmdb"

        add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ]

        add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}"  ]

        }

    mutate {

                        convert => [ "[geoip][coordinates]", "float"]

          }

 

    }

output {

     elasticsearch {

      action => "index"

      hosts =>"192.168.10.100:9200"

      index => "logstash-nginx-%{+yyyy.MM.dd}"

      }

}

##说明:这里接收来自:redis的数据key为nginx的。然后进行正则匹配筛选数据。

Geoip调用我们本地下载的库,在linux版本下现在用:GeoLite2-City.mmdb,可以去网上下载。

 

备注:基本上操作的也就是logstash的相关操作,其他都是傻瓜安装。但是记得要启动elastic监听端口,启动redis监听端口。最后面启动logstash倒入数据。

 

这个比较简单,调用city库之后,选择Tile map即可:

face/WH3ZtpC4a43YbnJaatXYSifWWE5KEw8D.png

 

这里是kibana带的地图,可以看到是英文的城市名之类的,我们改成高德地图,显示中文城市名。

 

3、修改kibana.yml添加如下URL:

tilemap.url: "http://webrd02.is.autonavi.com/appmaptilelang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}"

 

4、重启kibana即可得到如下图形:

face/4QBMAx8EbrGG6SmwNB2riGiNFJNAcZZD.png

 

5、到这里已经差不多完成了。然后还有剩下的相关图表。大家熟悉kibana自己做聚合运算即可。

 

6、有一些nginx喜欢用如下的默认格式:

 log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '

                      '$status $body_bytes_sent "$http_referer" '

                      '"$http_user_agent" "$http_x_forwarded_for"';

7、可以用如下的grok,默认一些正则表达式logstash已经提供,我们可以如下地址去查看:

vendor/bundle/jruby/1.9/gems/logstash-patterns-core-4.0.2/patterns

 

8、我们切换到这个目录下,创建相关的正则:

[root@controller logstash-5.0.0]# cd vendor/bundle/jruby/1.9/gems/logstash-patterns-core-4.0.2/patterns[root@controller patterns]# cat nginx

NGUSERNAME [a-zA-Z\.\@\-\+_%]+

NGUSER %{NGUSERNAME}

NGINXACCESS %{IPORHOST:clientip} - %{NGUSER:remote_user} \[%{HTTPDATE:timestamp}\] \"(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})\" %{NUMBER:response} (?:%{NUMBER:bytes:float}|-) %{QS:referrer} %{QS:agent} %{NOTSPACE:http_x_forwarded_for} %{NUMBER:request_time:float}

 

9、直接调用即可:

###到处已经可以手工了,剩下就是采集数据kibana聚合出图的事情。

[root@controller etc]# cat nginx.conf

input {

  redis {

    host => "192.168.10.100"

    port => 6379

    data_type => "list"

    key => "nginx"

  }

}

 filter {

    grok {

        match => { "message" => "%{NGINXACCESS}" }

    }

    date {

        match => [ "timestamp" , "dd/MMM/YYYY:HH:mm:ss Z" ]

    }

    geoip {

      source => "clientip"

      target => "geoip"

      database => "/test/logstash-5.0.0/GeoLite2-City.mmdb"

      add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ]

      add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}"  ]

    }

    mutate {

      convert => [ "[geoip][coordinates]", "float"]

    }  

  }

output {

       stdout{codec=>rubydebug}

       elasticsearch {

       action => "index"

       hosts  => "192.168.63.235:9200"

       index  => "logstash-nginx-%{+yyyy.MM.dd}"

   }

}

10、可以完善的,就是nginx我们可以再生成数据的时候以json的格式生成,这样就不用grok去解析这么消耗CPU了:

log_format json '{"@timestamp":"$time_iso8601",'

                 '"host":"$server_addr",'

                 '"clientip":"$remote_addr",'

                 '"size":$body_bytes_sent,'

                 '"responsetime":$request_time,'

                 '"upstreamtime":"$upstream_response_time",'

                 '"upstreamhost":"$upstream_addr",'

                 '"http_host":"$host",'

                 '"url":"$uri",'

                 '"xff":"$http_x_forwarded_for",'

                 '"referer":"$http_referer",'

                 '"agent":"$http_user_agent",'

                 '"status":"$status"}';

access_log  /etc/nginx/logs/access_nginx.json  json;  

11、这样就省去了很多解析的部分,直接用json格式解析即可。

[root@controller logstash-5.0.0]# cat etc/nginx_json.conf

input {

  file {             #从nginx日志读入

    type => "nginx-access"

    path => "/etc/nginx/logs/access_nginx.json"

    start_position => "beginning"

    codec => "json"  #这里指定codec格式为json

  }

}

 

filter {

   if [type] == "nginx-access"{

       geoip {

      source => "clientip"

      target => "geoip"

      database => "/test/logstash-5.0.0/GeoLite2-City.mmdb"

      add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ]

      add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}"  ]

    }

   }

}

 

output {

    if [type] == "nginx-access" {

    stdout{codec=>rubydebug}

    elasticsearch {

        action => "index"

        hosts  => "192.168.63.235:9200"

        index  => "mysql-slow-%{+yyyy.MM.dd}"

     }

  }

}

 

注意GeoLite2-City.mmdb用这个库,我之前用bat这个。是出不来图的

ELK相关课程:http://www.roncoo.com/course/view/3c0710458fe347c2a0b31135bbbcb57b

 
posted @ 2017-01-13 10:58  qingfeng_Fy  阅读(1663)  评论(2编辑  收藏  举报