【JZOJ4709】【NOIP2016提高A组模拟8.17】Matrix

题目描述

题目描述

输入

输入

输出

输出

样例输入

4 3 5
4 1 7 3
4 7 4 8

样例输出

59716

数据范围

数据范围

解法

40%暴力即可;
60%依然暴力;
100%依次计算第一行和第一列对答案的贡献即可:
可以知道f[i][j]对答案的贡献=a^(n-i)*b^(n-j)*C(n-i+n-j,n-j)
然后利用逆元计算组合数,快速幂快速算出答案即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) ll(log(x)/log(y))
using namespace std;
const char* fin="aP1.in";
const char* fout="aP1.out";
const ll inf=0x7fffffff;
const ll maxn=100007;
const ll mo=1000000007;
ll n,m1,m2,i,j,k;
ll ans,f[maxn*2];
ll qpower(ll a,ll b){
    ll c=1;
    while (b){
        if (b%2) c=(c*a)%mo;
        a=(a*a)%mo;
        b/=2;
    }
    return c;
}
ll niyuan(ll a){
    return qpower(a,mo-2);
}
ll c(ll a,ll b){
    return f[a]*niyuan(f[b])%mo*niyuan(f[a-b])%mo;
}
int main(){
    scanf("%d%d%d",&n,&m1,&m2);
    f[0]=1;
    for (i=1;i<=n*2;i++) f[i]=f[i-1]*i%mo;
    for (i=1;i<=n;i++) {
        scanf("%d",&j);
        if (i>1) ans=(ans+qpower(m1,n-1)*qpower(m2,n-i)%mo*j%mo*c(n-2+n-i,n-2))%mo;
    }
    for (i=1;i<=n;i++) {
        scanf("%d",&j);
        if (i>1) ans=(ans+qpower(m1,n-i)*qpower(m2,n-1)%mo*j%mo*c(n-2+n-i,n-2))%mo;
    }
    printf("%lld",ans);
    return 0;
}
posted @ 2016-08-18 10:10  hiweibolu  阅读(148)  评论(0编辑  收藏  举报