数学知识:Convex Optimization B
Convex optimization problems
- optimization in standard form
- convex optimization problems
- quasiconvex optimization
- linaer optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization
optimization problem in standard form
\[\begin{align*}
minimize~&f_0(x) \\
subject~to~&f_i(x)\le0,i=1,...,m \\
&h_i(x)=0, i=1,...,p
\end{align*}
\]
- \(x\in\bf{R}^n\) is the optimization variable
optimal and locally optimal points
\(x\) is feasible if \(x\in~dom~f_0\) and it satisfies the constraints
a feasible \(x\) is optimal if \(f_0(x)=p^*\); \(X_{opt}\) is the set of optimal points
x is locally optimal if there is an \(R>0\) such that \(x\) is optimal for
\[\begin{align*}
minimize(over~z)~&f_0(z) \\
subject~to~&f_i(x)\le0,i=1,...,m~~~~h_i(z)=0,i=1,...,p \\
&\Vert z-x\Vert_2\le R
\end{align*}
\]
examples
implicit constraints
the standard form optimization problem has an implicit constraint
\[x\in\mathcal{D}=\bigcap\limits_{i=0}^m dom~f_i~\cap~\bigcap\limits_{i=1}^p dom~h_i,
\]
- we call \(\mathcal{D}\) the domain of the problem
feasibility problem
\[\begin{align*}
find~~~~~~~~~~&x \\
subject~to~&f_i(x)\le0,i=1,...,m \\
&h_i(x)=0,i=1,...,p
\end{align*}
\]
convex optimization problem
standard convex optimization problem
\[\begin{align*}
minimize~&f_0(x) \\
subject~to~&f_i(x),i=1,...,m \\
&a_i^Tx=b_i,i=1,...,p
\end{align*}
\]
- \(f_0,f_1,..,f_m\) are convex; equality constraints are affine
- problem is quasiconvex if \(f_0\) is quasiconvex (and \(f_1,...,f_m\) convex)
often written as
\[\begin{align*}
minimize~&f_0(x) \\
subject~to~&f_i(x),i=1,...,m \\
&Ax=b
\end{align*}
\]
local and global optima
any locally optimal opint of a convex problem is (globally) optimal
optimality criterion for differentiable \(f_0\)
-
unconstrainted problem
-
equality constrainted problem
-
minimization over nonnegative orthant
equivalent convex problem
-
eliminating equality constraints
-
introducing equality constraints
-
introducing slack variables for linear inequalities
-
epigraph form
-
minimizing over some variables
本文来自博客园,作者:工大鸣猪,转载请注明原文链接:https://www.cnblogs.com/hit-ztx/p/17979925