数学知识:Convex Optimization B

Convex optimization problems

  • optimization in standard form
  • convex optimization problems
  • quasiconvex optimization
  • linaer optimization
  • quadratic optimization
  • geometric programming
  • generalized inequality constraints
  • semidefinite programming
  • vector optimization

optimization problem in standard form

\[\begin{align*} minimize~&f_0(x) \\ subject~to~&f_i(x)\le0,i=1,...,m \\ &h_i(x)=0, i=1,...,p \end{align*} \]

  • \(x\in\bf{R}^n\) is the optimization variable

optimal and locally optimal points

\(x\) is feasible if \(x\in~dom~f_0\) and it satisfies the constraints

a feasible \(x\) is optimal if \(f_0(x)=p^*\); \(X_{opt}\) is the set of optimal points

x is locally optimal if there is an \(R>0\) such that \(x\) is optimal for

\[\begin{align*} minimize(over~z)~&f_0(z) \\ subject~to~&f_i(x)\le0,i=1,...,m~~~~h_i(z)=0,i=1,...,p \\ &\Vert z-x\Vert_2\le R \end{align*} \]

examples

implicit constraints

the standard form optimization problem has an implicit constraint

\[x\in\mathcal{D}=\bigcap\limits_{i=0}^m dom~f_i~\cap~\bigcap\limits_{i=1}^p dom~h_i, \]

  • we call \(\mathcal{D}\) the domain of the problem

feasibility problem

\[\begin{align*} find~~~~~~~~~~&x \\ subject~to~&f_i(x)\le0,i=1,...,m \\ &h_i(x)=0,i=1,...,p \end{align*} \]

convex optimization problem

standard convex optimization problem

\[\begin{align*} minimize~&f_0(x) \\ subject~to~&f_i(x),i=1,...,m \\ &a_i^Tx=b_i,i=1,...,p \end{align*} \]

  • \(f_0,f_1,..,f_m\) are convex; equality constraints are affine
  • problem is quasiconvex if \(f_0\) is quasiconvex (and \(f_1,...,f_m\) convex)
    often written as

\[\begin{align*} minimize~&f_0(x) \\ subject~to~&f_i(x),i=1,...,m \\ &Ax=b \end{align*} \]

local and global optima

any locally optimal opint of a convex problem is (globally) optimal

optimality criterion for differentiable \(f_0\)

  • unconstrainted problem

  • equality constrainted problem

  • minimization over nonnegative orthant

equivalent convex problem

  • eliminating equality constraints

  • introducing equality constraints

  • introducing slack variables for linear inequalities

  • epigraph form

  • minimizing over some variables

posted @ 2024-01-22 14:09  工大鸣猪  阅读(8)  评论(0编辑  收藏  举报